Shen Gangxu, Jia Yong, Wang Wei-Lung
School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, 84001, Taiwan.
Department of Biology, National Changhua University of Education, Changhua, 500, Taiwan.
J Biol Res (Thessalon). 2021 May 28;28(1):12. doi: 10.1186/s40709-021-00144-7.
MADS-box transcription factors function as homo- or heterodimers and regulate many aspects of plant development; moreover, MADS-box genes have undergone extensive duplication and divergence. For example, the morphological diversity of floral organs is closely related to the functional divergence of the MADS-box gene family. B-class genes (such as Arabidopsis thaliana APETALA3 [AP3] and PISTILLATA [PI]) belong to a subgroup of MADS-box genes. Here, we collected 97 MADS-box B protein sequences from 21 seed plant species and examined their motifs to better understand the functional evolution of B proteins.
We used the MEME tool to identify conserved sequence motifs in these B proteins; unique motif arrangements and sequences were identified in these B proteins. The keratin-like domains of Malus domestica and Populus trichocarpa B proteins differed from those in other angiosperms, suggesting that a novel regulatory network might have evolved in these species. The MADS domains of Nelumbo nucifera, Glycine max, and Amborella trichopoda B-proteins contained motif 9; in contrast, those of other plants contained motif 1. Protein modelling analyses revealed that MADS domains with motif 9 may lack amino acid sites required for DNA-binding. These results suggested that the three species might share an alternative mechanism controlling floral development.
Amborella trichopoda has B proteins with either motif 1 or motif 9 MADS domains, suggesting that these two types of MADS domains evolved from the ancestral domain into two groups, those with motif 9 (N. nucifera and G. max), and those with motif 1. Moreover, our results suggest that the homodimer/heterodimer intermediate transition structure first appeared in A. trichopoda. Therefore, our systematic analysis of the motifs in B proteins sheds light on the evolution of these important transcription factors.
MADS-box转录因子以同二聚体或异二聚体形式发挥作用,调控植物发育的多个方面;此外,MADS-box基因经历了广泛的复制和分化。例如,花器官的形态多样性与MADS-box基因家族的功能分化密切相关。B类基因(如拟南芥的APETALA3 [AP3] 和PISTILLATA [PI])属于MADS-box基因的一个亚组。在此,我们从21种种子植物物种中收集了97个MADS-box B蛋白序列,并研究了它们的基序,以更好地了解B蛋白的功能进化。
我们使用MEME工具来识别这些B蛋白中的保守序列基序;在这些B蛋白中鉴定出了独特的基序排列和序列。苹果和毛果杨B蛋白的角蛋白样结构域与其他被子植物不同,这表明这些物种可能进化出了一种新的调控网络。莲、大豆和无油樟B蛋白的MADS结构域包含基序9;相比之下,其他植物的MADS结构域包含基序1。蛋白质建模分析表明,含有基序9的MADS结构域可能缺少DNA结合所需的氨基酸位点。这些结果表明,这三个物种可能共享一种控制花发育的替代机制。
无油樟具有含有基序1或基序9的MADS结构域的B蛋白,这表明这两种类型的MADS结构域从祖先结构域进化为两组,即含有基序9的(莲和大豆)和含有基序I的。此外,我们的结果表明,同二聚体/异二聚体中间过渡结构首先出现在无油樟中。因此,我们对B蛋白基序的系统分析揭示了这些重要转录因子的进化过程。