Suppr超能文献

拓扑学在机器学习中的应用:从全局到局部

Topology Applied to Machine Learning: From Global to Local.

作者信息

Adams Henry, Moy Michael

机构信息

Department of Mathematics, Colorado State University, Fort Collins, CO, United States.

出版信息

Front Artif Intell. 2021 May 14;4:668302. doi: 10.3389/frai.2021.668302. eCollection 2021.

Abstract

Through the use of examples, we explain one way in which applied topology has evolved since the birth of persistent homology in the early 2000s. The first applications of topology to data emphasized the shape of a dataset, such as the three-circle model for 3 × 3 pixel patches from natural images, or the configuration space of the cyclo-octane molecule, which is a sphere with a Klein bottle attached via two circles of singularity. In these studies of global shape, short persistent homology bars are disregarded as sampling noise. More recently, however, persistent homology has been used to address questions about the geometry of data. For instance, how can local geometry be vectorized for use in machine learning problems? Persistent homology and its vectorization methods, including persistence landscapes and persistence images, provide popular techniques for incorporating both local geometry and global topology into machine learning. Our meta-hypothesis is that the short bars are as important as the long bars for many machine learning tasks. In defense of this claim, we survey applications of persistent homology to shape recognition, agent-based modeling, materials science, archaeology, and biology. Additionally, we survey work connecting persistent homology to geometric features of spaces, including curvature and fractal dimension, and various methods that have been used to incorporate persistent homology into machine learning.

摘要

通过举例,我们解释了自21世纪初持久同调诞生以来应用拓扑学的一种演变方式。拓扑学在数据方面的最初应用强调数据集的形状,比如自然图像中3×3像素块的三圆模型,或者环辛烷分子的构型空间,它是一个通过两个奇点圆连接着一个克莱因瓶的球体。在这些关于全局形状的研究中,短的持久同调条被视为采样噪声而被忽略。然而,最近持久同调已被用于解决有关数据几何的问题。例如,如何将局部几何向量化以用于机器学习问题?持久同调及其向量化方法,包括持久景观和持久图像,为将局部几何和全局拓扑纳入机器学习提供了常用技术。我们的元假设是,对于许多机器学习任务而言,短条与长条同样重要。为支持这一观点,我们综述了持久同调在形状识别、基于智能体的建模、材料科学、考古学和生物学中的应用。此外,我们还综述了将持久同调与空间几何特征(包括曲率和分形维)相联系的工作,以及已用于将持久同调纳入机器学习的各种方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc0/8160457/aef35cf2a55a/frai-04-668302-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验