Suppr超能文献

使用持久景观对点云变异性进行拓扑几何分析。

Topo-Geometric Analysis of Variability in Point Clouds Using Persistence Landscapes.

作者信息

Matuk James, Kurtek Sebastian, Bharath Karthik

出版信息

IEEE Trans Pattern Anal Mach Intell. 2024 Dec;46(12):11035-11046. doi: 10.1109/TPAMI.2024.3451328. Epub 2024 Nov 6.

Abstract

Topological data analysis provides a set of tools to uncover low-dimensional structure in noisy point clouds. Prominent amongst the tools is persistence homology, which summarizes birth-death times of homological features using data objects known as persistence diagrams. To better aid statistical analysis, a functional representation of the diagrams, known as persistence landscapes, enable use of functional data analysis and machine learning tools. Topological and geometric variabilities inherent in point clouds are confounded in both persistence diagrams and landscapes, and it is important to distinguish topological signal from noise to draw reliable conclusions on the structure of the point clouds when using persistence homology. We develop a framework for decomposing variability in persistence diagrams into topological signal and topological noise through alignment of persistence landscapes using an elastic Riemannian metric. Aligned landscapes (amplitude) isolate the topological signal. Reparameterizations used for landscape alignment (phase) are linked to a resolution parameter used to generate persistence diagrams, and capture topological noise in the form of geometric, global scaling and sampling variabilities. We illustrate the importance of decoupling topological signal and topological noise in persistence diagrams (landscapes) using several simulated examples. We also demonstrate that our approach provides novel insights in two real data studies.

摘要

拓扑数据分析提供了一组工具,用于在有噪声的点云中揭示低维结构。其中突出的工具是持久同调,它使用称为持久图的数据对象来总结同调特征的出生-死亡时间。为了更好地辅助统计分析,持久图的一种函数表示形式,即持久景观,使得能够使用函数数据分析和机器学习工具。点云中固有的拓扑和几何变异性在持久图和景观中都相互混淆,在使用持久同调时,区分拓扑信号和噪声对于得出关于点云结构的可靠结论很重要。我们开发了一个框架,通过使用弹性黎曼度量对齐持久景观,将持久图中的变异性分解为拓扑信号和拓扑噪声。对齐的景观(幅度)分离出拓扑信号。用于景观对齐的重新参数化(相位)与用于生成持久图的分辨率参数相关联,并以几何、全局缩放和采样变异性的形式捕获拓扑噪声。我们使用几个模拟示例说明了在持久图(景观)中解耦拓扑信号和拓扑噪声的重要性。我们还证明了我们的方法在两项实际数据研究中提供了新的见解。

相似文献

1
Topo-Geometric Analysis of Variability in Point Clouds Using Persistence Landscapes.使用持久景观对点云变异性进行拓扑几何分析。
IEEE Trans Pattern Anal Mach Intell. 2024 Dec;46(12):11035-11046. doi: 10.1109/TPAMI.2024.3451328. Epub 2024 Nov 6.
2
Cycle Registration in Persistent Homology With Applications in Topological Bootstrap.循环群注册在持久同调及其在拓扑自举中的应用。
IEEE Trans Pattern Anal Mach Intell. 2023 May;45(5):5579-5593. doi: 10.1109/TPAMI.2022.3217443. Epub 2023 Apr 3.
3
A universal null-distribution for topological data analysis.拓扑数据分析的通用零分布。
Sci Rep. 2023 Jul 28;13(1):12274. doi: 10.1038/s41598-023-37842-2.
4
Homology of homologous knotted proteins.同源打结蛋白的同源性。
J R Soc Interface. 2023 Apr;20(201):20220727. doi: 10.1098/rsif.2022.0727. Epub 2023 Apr 26.
5
A Comparative Study of Machine Learning Methods for Persistence Diagrams.持久图的机器学习方法比较研究
Front Artif Intell. 2021 Jul 28;4:681174. doi: 10.3389/frai.2021.681174. eCollection 2021.
7
Metric geometry of spaces of persistence diagrams.持久图空间的度量几何
J Appl Comput Topol. 2024;8(8):2197-2246. doi: 10.1007/s41468-024-00189-2. Epub 2024 Sep 3.
8
Topological landscapes: a terrain metaphor for scientific data.拓扑景观:科学数据的地形隐喻。
IEEE Trans Vis Comput Graph. 2007 Nov-Dec;13(6):1416-23. doi: 10.1109/TVCG.2007.70601.
10
Autism Classification Using Topological Features and Deep Learning: A Cautionary Tale.利用拓扑特征和深度学习进行自闭症分类:一个警示故事。
Med Image Comput Comput Assist Interv. 2019 Oct;11766:736-744. doi: 10.1007/978-3-030-32248-9_82. Epub 2019 Oct 10.

本文引用的文献

2
Shape Analysis of Functional Data With Elastic Partial Matching.基于弹性局部匹配的函数型数据形状分析
IEEE Trans Pattern Anal Mach Intell. 2022 Dec;44(12):9589-9602. doi: 10.1109/TPAMI.2021.3130535. Epub 2022 Nov 7.
3
A Survey of Topological Machine Learning Methods.拓扑机器学习方法综述
Front Artif Intell. 2021 May 26;4:681108. doi: 10.3389/frai.2021.681108. eCollection 2021.
4
Persistent Homology Analysis of Brain Artery Trees.脑动脉树的持久同调分析
Ann Appl Stat. 2016;10(1):198-218. doi: 10.1214/15-AOAS886. Epub 2016 Mar 25.
6
Analyzing attributes of vessel populations.分析血管群体的属性。
Med Image Anal. 2005 Feb;9(1):39-49. doi: 10.1016/j.media.2004.06.024.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验