Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland.
Acc Chem Res. 2021 Jun 15;54(12):2764-2774. doi: 10.1021/acs.accounts.1c00178. Epub 2021 May 31.
Contradictory to the first intuitive impression that forging putatively flat aromatic rings evades stereoisomerism, a striking variety of atropisomeric compounds are conceivable by the formation of arenes, offering captivating avenues for catalyst-controlled stereoselective strategies. Since the assembled atropisomeric products that contain one or several rotationally restricted single bonds are characterized by especially well defined molecular architectures, they are distinctly suitable for numerous pertinent applications. In view of the fascinating arene-forming aldol condensation pathways taking place in polyketide biosynthesis (cyclases/aromatases (CYC/ARO)), the versatile small-molecule-catalyzed aldol reaction appeared as an exceptionally appealing synthetic means to prepare various unexplored atropisomeric compounds in our efforts presented herein. In our initial studies, the use of secondary amine organocatalysts provided excellent selectivities in stereoselective arene-forming aldol condensations for a broad range of atropisomeric products, such as biaryls and rotationally restricted aromatic amides. In further analogy to polyketide biosynthesis, it was also conceivable that several aromatic rings are formed in catalytic cascade reactions. The use of small-molecule catalysts thereby enabled us to transfer this concept to the conversion of unnatural and noncanonical polyketide substrates, thus giving access to atropisomers with particular value for synthetic applications. The versatility of the stereoselective aldol reactions with numerous catalytic activation modes further provided a strategy to individually control several stereogenic axes, similar to the various methodologies developed for controlling stereocenter configurations. By the use of iterative building block additions combined with catalyst-controlled aldol reactions to form the aromatic rings, stereodivergent pathways for catalyst-substrate-matched and -mismatched products were obtained. Besides secondary amines, cinchona-alkaloid-based quaternary ammonium salts also proved to be highly efficient in overcoming severe substrate bias. The obtained atropisomeric multiaxis systems, with all of the biaryl bonds suitably restricted in rotation even at high temperatures, are spatially distinctly defined. The helical secondary structure is therefore excellently suited for several captivating applications.While previous catalyst-controlled stereoselective methods distinguish two stereoisomers for each stereogenic unit, catalyst control beyond the realms of this dualistic stereoisomerism remained unexplored. By the selective preparation of O̅ki atropisomers characterized by their sixfold stereogenicity in Rh-catalyzed [2 + 2 + 2] cyclotrimerizations, one out of the six possible stereoisomers resulting from the restricted rotation of a single bond was shown to be catalytically addressable. Catalyst control over higher-order stereogenicity therefore further interconnects conformational analysis and stereoselective catalysis and offers captivating avenues to explore uncharted stereochemical space for creating a broad range of unprecedented molecular motifs.
与最初的直观印象相反,即假定形成平面芳香环会避免立体异构,通过形成芳烃,仍然可以设想出各种轴手性化合物,为催化剂控制的立体选择性策略提供了迷人的途径。由于含有一个或多个旋转受限的单键的组装轴手性产物的分子结构特别明确,因此它们非常适合许多相关的应用。鉴于多酮生物合成中发生的迷人的芳构化Aldol 缩合途径(环化酶/芳构酶(CYC/ARO)),多功能小分子催化的Aldol 反应似乎是一种特别有吸引力的合成手段,可以在我们的研究中制备各种未探索的轴手性化合物。在我们的初步研究中,使用仲胺有机催化剂在广泛的轴手性产物的立体选择性芳构化 Aldol 缩合中提供了极好的选择性,例如联苯和旋转受限的芳香酰胺。进一步类似于多酮生物合成,可以设想在催化级联反应中形成多个芳环。使用小分子催化剂使我们能够将这一概念转移到非天然和非典型多酮底物的转化中,从而获得对合成应用具有特殊价值的轴手性化合物。具有多种催化活化模式的立体选择性 Aldol 反应的多功能性还提供了一种策略,可以单独控制几个立体中心,类似于为控制立体中心构型而开发的各种方法。通过使用迭代构建块添加并结合催化剂控制的 Aldol 反应来形成芳环,可以获得与催化剂-底物匹配和不匹配产物的立体发散途径。除了仲胺之外,金鸡纳生物碱衍生的季铵盐也被证明在克服严重的底物偏倚方面非常有效。获得的轴手性多轴系统中,所有联苯键即使在高温下也都适当限制旋转,空间上明显定义。螺旋二级结构因此非常适合多种迷人的应用。虽然以前的催化剂控制的立体选择性方法为每个立体中心区分两种立体异构体,但对于超出这种二元立体异构范围的催化剂控制仍然没有得到探索。通过 Rh 催化的[2+2+2]环三聚反应中 O̅ki 轴手性的特征的立体选择性制备,可以证明其中一种由单个键的受限旋转产生的六个可能的立体异构体中的一个是可以通过催化剂控制的。因此,对更高阶立体异构性的控制进一步将构象分析和立体选择性催化联系起来,并为探索开拓全新的分子基序提供了迷人的途径。