Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, Luxembourg, Luxembourg.
College of Pharmacy, Seoul National University, Seoul, South Korea.
Methods Mol Biol. 2021;2276:129-141. doi: 10.1007/978-1-0716-1266-8_9.
Cellular energy metabolism is regulated by complex metabolic pathways. Although anaerobic glycolysis was reported as a primary source of energy in cancer leading to a high rate of lactate production, current evidence shows that the main energy source supporting cancer cell metabolism relies on mitochondrial metabolism. Mitochondria are the key organelle maintaining optimal cellular energy levels. MitoPlate™ S-1 provides a highly reproducible bioenergetics tool to analyze the electron flow rate in live cells. Measuring the rates of electron flow into and through the electron transport chain using different NADH and FADH-producing metabolic substrates enables the assessment of mitochondrial functionality. MitoPlate™ S-1 are 96-well microplates pre-coated with different substrates used as probes to examine the activity of mitochondrial metabolic pathways based on a colorimetric assay. A comparative metabolic analysis between cell lines or primary cells allows to establish a specific metabolic profile and to detect possible alterations of the mitochondrial function of a tumor cell. Moreover, the direct measurements of electron flux triggered by metabolic pathway activation could highlight targets for potential drug candidates.
细胞能量代谢受复杂的代谢途径调控。尽管无氧糖酵解曾被报道为癌症中能量的主要来源,导致乳酸生成率高,但目前的证据表明,支持癌细胞代谢的主要能量来源依赖于线粒体代谢。线粒体是维持最佳细胞能量水平的关键细胞器。MitoPlate™ S-1 提供了一种高度可重复的生物能量学工具,可用于分析活细胞中的电子流速率。使用不同的 NADH 和 FADH 产生代谢底物来测量电子进入和通过电子传递链的速率,可评估线粒体功能。MitoPlate™ S-1 是 96 孔微孔板,预先涂有不同的作为探针的底物,用于根据比色法测定来检查线粒体代谢途径的活性。细胞系或原代细胞之间的比较代谢分析可以确定特定的代谢特征,并检测肿瘤细胞中线粒体功能的可能变化。此外,通过代谢途径激活引发的电子流的直接测量可以突出潜在药物候选物的靶点。