Suppr超能文献

大肠杆菌中蛋白质和大分子机器的动力学

Dynamics of Proteins and Macromolecular Machines in Escherichia coli.

机构信息

Department of Biology, McGill University, Montreal, QC, Canada.

出版信息

EcoSal Plus. 2021 Dec 15;9(2):eESP00112020. doi: 10.1128/ecosalplus.ESP-0011-2020. Epub 2021 Jun 1.

Abstract

Proteins are major contributors to the composition and the functions in the cell. They often assemble into larger structures, macromolecular machines, to carry out intricate essential functions. Although huge progress in understanding how macromolecular machines function has been made by reconstituting them , the role of the intracellular environment is still emerging. The development of fluorescence microscopy techniques in the last 2 decades has allowed us to obtain an increased understanding of proteins and macromolecular machines in cells. Here, we describe how proteins move by diffusion, how they search for their targets, and how they are affected by the intracellular environment. We also describe how proteins assemble into macromolecular machines and provide examples of how frequent subunit turnover is used for them to function and to respond to changes in the intracellular conditions. This review emphasizes the constant movement of molecules in cells, the stochastic nature of reactions, and the dynamic nature of macromolecular machines.

摘要

蛋白质是细胞组成和功能的主要贡献者。它们经常组装成更大的结构,即大分子机器,以执行复杂的基本功能。尽管通过重组这些大分子机器在理解它们的功能方面取得了巨大进展,但细胞内环境的作用仍在不断显现。在过去的 20 年中,荧光显微镜技术的发展使我们能够更深入地了解细胞中的蛋白质和大分子机器。在这里,我们描述了蛋白质如何通过扩散移动,它们如何寻找目标,以及它们如何受到细胞内环境的影响。我们还描述了蛋白质如何组装成大分子机器,并提供了一些例子,说明频繁的亚基替换如何使它们发挥功能并对细胞内环境的变化做出响应。这篇综述强调了分子在细胞中的持续运动、反应的随机性和大分子机器的动态性质。

相似文献

1
Dynamics of Proteins and Macromolecular Machines in Escherichia coli.
EcoSal Plus. 2021 Dec 15;9(2):eESP00112020. doi: 10.1128/ecosalplus.ESP-0011-2020. Epub 2021 Jun 1.
2
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
3
Stoichiometry and turnover of the bacterial flagellar switch protein FliN.
mBio. 2014 Jul 1;5(4):e01216-14. doi: 10.1128/mBio.01216-14.
4
Stoichiometry and architecture of active DNA replication machinery in Escherichia coli.
Science. 2010 Apr 23;328(5977):498-501. doi: 10.1126/science.1185757.
5
Signal-dependent turnover of the bacterial flagellar switch protein FliM.
Proc Natl Acad Sci U S A. 2010 Jun 22;107(25):11347-51. doi: 10.1073/pnas.1000284107. Epub 2010 May 24.
6
High-pressure microscopy for tracking dynamic properties of molecular machines.
Biophys Chem. 2017 Dec;231:71-78. doi: 10.1016/j.bpc.2017.03.010. Epub 2017 Mar 30.
7
The progression of replication forks at natural replication barriers in live bacteria.
Nucleic Acids Res. 2016 Jul 27;44(13):6262-73. doi: 10.1093/nar/gkw397. Epub 2016 May 10.
8
Localization of protein aggregation in Escherichia coli is governed by diffusion and nucleoid macromolecular crowding effect.
PLoS Comput Biol. 2013 Apr;9(4):e1003038. doi: 10.1371/journal.pcbi.1003038. Epub 2013 Apr 25.
9
Modular Assembly of the Bacterial Large Ribosomal Subunit.
Cell. 2016 Dec 1;167(6):1610-1622.e15. doi: 10.1016/j.cell.2016.11.020.
10
Repurposing a chemosensory macromolecular machine.
Nat Commun. 2020 Apr 27;11(1):2041. doi: 10.1038/s41467-020-15736-5.

本文引用的文献

1
Transient non-specific DNA binding dominates the target search of bacterial DNA-binding proteins.
Mol Cell. 2021 Apr 1;81(7):1499-1514.e6. doi: 10.1016/j.molcel.2021.01.039. Epub 2021 Feb 22.
2
ATP-Driven Separation of Liquid Phase Condensates in Bacteria.
Mol Cell. 2020 Jul 16;79(2):293-303.e4. doi: 10.1016/j.molcel.2020.06.034.
3
Clusters of bacterial RNA polymerase are biomolecular condensates that assemble through liquid-liquid phase separation.
Proc Natl Acad Sci U S A. 2020 Aug 4;117(31):18540-18549. doi: 10.1073/pnas.2005019117. Epub 2020 Jul 16.
4
Direct observation of independently moving replisomes in Escherichia coli.
Nat Commun. 2020 Jun 19;11(1):3109. doi: 10.1038/s41467-020-16946-7.
5
A Primase-Induced Conformational Switch Controls the Stability of the Bacterial Replisome.
Mol Cell. 2020 Jul 2;79(1):140-154.e7. doi: 10.1016/j.molcel.2020.04.037. Epub 2020 May 27.
6
Making the Case for Disordered Proteins and Biomolecular Condensates in Bacteria.
Trends Biochem Sci. 2020 Aug;45(8):668-680. doi: 10.1016/j.tibs.2020.04.011. Epub 2020 May 23.
7
Intracellular Positioning Systems Limit the Entropic Eviction of Secondary Replicons Toward the Nucleoid Edges in Bacterial Cells.
J Mol Biol. 2020 Feb 7;432(3):745-761. doi: 10.1016/j.jmb.2019.11.027. Epub 2020 Jan 11.
8
A gatekeeping function of the replicative polymerase controls pathway choice in the resolution of lesion-stalled replisomes.
Proc Natl Acad Sci U S A. 2019 Dec 17;116(51):25591-25601. doi: 10.1073/pnas.1914485116. Epub 2019 Dec 3.
9
Chromosome organization in bacteria: mechanistic insights into genome structure and function.
Nat Rev Genet. 2020 Apr;21(4):227-242. doi: 10.1038/s41576-019-0185-4. Epub 2019 Nov 25.
10
Converting GTP hydrolysis into motion: versatile translational elongation factor G.
Biol Chem. 2019 Dec 18;401(1):131-142. doi: 10.1515/hsz-2019-0313.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验