Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India.
Langmuir. 2021 Jun 15;37(23):7107-7117. doi: 10.1021/acs.langmuir.1c00700. Epub 2021 Jun 1.
The real-time application of piezoelectric nanogenerators (PNGs) under a harsh environment remains a challenge due to lower output performance and poor durability. Thus, the development of flexible, sensitive, and stable PNGs became a topic of interest to capture different human motions including gesture monitoring to speech recognition. Herein, a scalable approach is adapted where naphthylamine bridging a [Cd(II)-μ-I] two-dimensional (2D) metal-organic framework (MOF)-reinforced poly(vinylidene fluoride) (PVDF) composite nanofibers mat is prepared to fabricate a flexible and sensitive composite piezoelectric nanogenerator (C-PNG). The needle-shaped MOF was successfully synthesized by the layering and diffusion of two different solutions. The incorporation of single-crystalline 2D MOF ensures a large content of electroactive phases (98%) with a resultant high-magnitude piezoelectric coefficient of 41 pC/N in a composite nanofibers mat due to the interfacial specific interaction with -CH-/-CF- dipoles of PVDF. As an outcome, C-PNG generates high electrical output (open-circuit voltage of 22 V and maximum power density of 24 μW/cm) with a very fast response time ( ≈ 5 ms) under periodic pressure imparting stimuli. Benefiting from bending and twisting functionality, C-PNG is capable of scavenging biomechanical energy by mimicking complex musculoskeletal motions that broaden its application in wearable electronics and fabric integrated medical devices. In addition, C-PNG also demonstrates an efficient acoustic vibration to electric energy conversion capability with an improved power density and acoustic sensitivity of 6.25 μW and 0.95 V/Pa, respectively. The overall energy conversion efficiency is sufficient to operate several consumer electronics without any energy storage unit. This acoustic observation is further validated by the finite element method-based theoretical simulation. Overall, the 2D MOF-based device design strategy opens up a new possibility to develop a human-motion compatible energy generator and a self-powered acoustic sensor to power up electronic gadgets as well as low-frequency noise detection.
由于输出性能较低和耐久性较差,压电纳米发电机(PNG)在恶劣环境下的实时应用仍然是一个挑战。因此,开发灵活、敏感和稳定的 PNG 成为一个热门话题,以捕捉包括手势监测到语音识别在内的各种人体运动。在此,采用了一种可扩展的方法,其中萘桥联[Cd(II)-μ-I]二维(2D)金属-有机骨架(MOF)增强聚偏二氟乙烯(PVDF)复合纳米纤维垫来制备柔性和敏感的复合压电纳米发电机(C-PNG)。通过分层和扩散两种不同的溶液成功合成了针状 MOF。由于与 PVDF 的-CH/-CF 偶极子的界面特定相互作用,单晶 2D MOF 的掺入确保了具有高幅度压电系数(41 pC/N)的电活性相(98%)的大含量。结果,C-PNG 在周期性压力施加刺激下产生高电输出(开路电压为 22 V,最大功率密度为 24 μW/cm)和非常快的响应时间(≈5 ms)。受益于弯曲和扭转功能,C-PNG 能够通过模仿复杂的肌肉骨骼运动来收集生物力学能量,从而拓宽了其在可穿戴电子设备和织物集成医疗设备中的应用。此外,C-PNG 还具有高效的声振动到电能转换能力,分别提高了 6.25 μW 的功率密度和 0.95 V/Pa 的声灵敏度。整体能量转换效率足以在没有任何储能单元的情况下运行多个消费电子产品。这种声观察进一步通过基于有限元方法的理论模拟得到验证。总体而言,基于 2D MOF 的器件设计策略为开发与人体运动兼容的能量发生器和自供电声传感器提供了新的可能性,以给电子设备供电以及低频噪声检测。