Educational Statistics and Research Methods, University of Arkansas.
Graduate Psychology, James Madison University.
Multivariate Behav Res. 2022 Sep-Oct;57(5):859-878. doi: 10.1080/00273171.2021.1920361. Epub 2021 Jun 1.
Traditional psychometric modeling focuses on observed categorical item responses, which can over-simplify the respondent cognitive response process. A further weakness is that analysis of ordinal responses has been primarily limited to a single substantive trait at one time point. We propose a significant expansion of this modeling framework to account for complex response processes across multiple waves of data collection using the beneficial item response tree framework. This study proposes a novel model, the longitudinal IRTree, for response processes in longitudinal studies, and investigates whether the response style changes are proportional to changes in the substantive trait of interest. A simulation study demonstrates adequate item parameter recovery in a Bayesian framework, especially with larger sample sizes of 2000. The longitudinal change parameters were recovered similarly well, with improved recovery using informative priors over default priors in Mplus. The empirical application demonstrates that relatively stable observed scores are due to a decrease in response styles offsetting an increase in the latent trait of interest.
传统的心理计量建模侧重于观察到的分类项目反应,这可能过于简化了受访者的认知反应过程。另一个弱点是,有序反应的分析主要限于一次分析一个实质性特征。我们建议对该建模框架进行重大扩展,以使用有益的项目反应树框架来解释在多个数据收集阶段的复杂反应过程。本研究提出了一种新的模型,即纵向 IRTree,用于纵向研究中的反应过程,并研究了反应模式的变化是否与感兴趣的实质性特征的变化成比例。一项模拟研究表明,在贝叶斯框架中,项目参数的恢复情况良好,尤其是在样本量较大(2000 个)的情况下。纵向变化参数的恢复情况也相似,在 Mplus 中使用信息先验比默认先验可以更好地恢复。实证应用表明,相对稳定的观测得分是由于反应模式的下降抵消了感兴趣的潜在特征的增加。