Suppr超能文献

用纵向 IRTree 模型对反应风格的变化进行建模。

Modeling Changes in Response Style with Longitudinal IRTree Models.

机构信息

Educational Statistics and Research Methods, University of Arkansas.

Graduate Psychology, James Madison University.

出版信息

Multivariate Behav Res. 2022 Sep-Oct;57(5):859-878. doi: 10.1080/00273171.2021.1920361. Epub 2021 Jun 1.

Abstract

Traditional psychometric modeling focuses on observed categorical item responses, which can over-simplify the respondent cognitive response process. A further weakness is that analysis of ordinal responses has been primarily limited to a single substantive trait at one time point. We propose a significant expansion of this modeling framework to account for complex response processes across multiple waves of data collection using the beneficial item response tree framework. This study proposes a novel model, the longitudinal IRTree, for response processes in longitudinal studies, and investigates whether the response style changes are proportional to changes in the substantive trait of interest. A simulation study demonstrates adequate item parameter recovery in a Bayesian framework, especially with larger sample sizes of 2000. The longitudinal change parameters were recovered similarly well, with improved recovery using informative priors over default priors in Mplus. The empirical application demonstrates that relatively stable observed scores are due to a decrease in response styles offsetting an increase in the latent trait of interest.

摘要

传统的心理计量建模侧重于观察到的分类项目反应,这可能过于简化了受访者的认知反应过程。另一个弱点是,有序反应的分析主要限于一次分析一个实质性特征。我们建议对该建模框架进行重大扩展,以使用有益的项目反应树框架来解释在多个数据收集阶段的复杂反应过程。本研究提出了一种新的模型,即纵向 IRTree,用于纵向研究中的反应过程,并研究了反应模式的变化是否与感兴趣的实质性特征的变化成比例。一项模拟研究表明,在贝叶斯框架中,项目参数的恢复情况良好,尤其是在样本量较大(2000 个)的情况下。纵向变化参数的恢复情况也相似,在 Mplus 中使用信息先验比默认先验可以更好地恢复。实证应用表明,相对稳定的观测得分是由于反应模式的下降抵消了感兴趣的潜在特征的增加。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验