Suppr超能文献

氮化铝/加成固化液体硅橡胶复合材料在高压电力封装中的研究。

Study on aluminum nitride/addition-cure liquid silicone rubber composite for high-voltage power encapsulation.

机构信息

College of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an, China.

出版信息

PLoS One. 2021 Jun 1;16(6):e0252619. doi: 10.1371/journal.pone.0252619. eCollection 2021.

Abstract

In view of the development direction of high power and miniaturization of high-voltage power supply, higher requirements are put forward for the breakdown strength, thermal conductivity of packaging materials for its high voltage output module. An electric-insulated heat-conducted material with aluminium nitride as heat conducting filler and addition-cure liquid silicone rubber (ALSR) as matrix for high voltage power encapsulation has been studied. Initially, the thermal conductivity and breakdown strength of composites were explored at different filler fractions. With increase of filler fraction, the thermal conductivity increased and the breakdown strength decreased. Then, with the packaging module volume as the optimization objective and the working temperature as the optimization condition, the temperature distribution of high voltage power supply was studied by using the finite element method, and 40wt% filling fraction was selected as the optimal ratio. Finally, the actual packaging experiment of the high voltage module is carried out. and the variation of the output voltage and temperature with the working time is obtained. According to the experimental results, the output voltage of the high voltage module is basically stable, and the maximum surface temperature is 40.4°C. The practicability of the electric-insulated heat-conducted material has been proved.

摘要

鉴于高压电源向高功率和小型化发展的趋势,对其高压输出模块的封装材料的击穿强度和导热系数提出了更高的要求。研究了一种以氮化铝为导热填料、加成型液体硅橡胶(ALSR)为基体的电绝缘导热材料,用于高压电源封装。首先,在不同填料分数下探索了复合材料的导热系数和击穿强度。随着填料分数的增加,导热系数增加,击穿强度降低。然后,以封装模块体积为优化目标,工作温度为优化条件,采用有限元法研究了高压电源的温度分布,选择 40wt%的填充率作为最佳比例。最后,进行了高压模块的实际封装实验,得到了工作时间与输出电压和温度变化的关系。根据实验结果,高压模块的输出电压基本稳定,最大表面温度为 40.4°C。证明了这种电绝缘导热材料的实用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e98/8168877/d7adb3ef1726/pone.0252619.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验