Suppr超能文献

基于轮廓波的海马磁共振成像纹理特征用于阿尔茨海默病的多变量分类和预测。

Contourlet-based hippocampal magnetic resonance imaging texture features for multivariant classification and prediction of Alzheimer's disease.

机构信息

School of Public Health, Capital Medical University, No. 10 XitoutiaoYouanmenwai Street, Beijing, 100069, China.

Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, 100069, China.

出版信息

Metab Brain Dis. 2018 Dec;33(6):1899-1909. doi: 10.1007/s11011-018-0296-1. Epub 2018 Sep 3.

Abstract

The study is aimed to assess whether the addition of contourlet-based hippocampal magnetic resonance imaging (MRI) texture features to multivariant models improves the classification of Alzheimer's disease (AD) and the prediction of mild cognitive impairment (MCI) conversion, and to evaluate whether Gaussian process (GP) and partial least squares (PLS) are feasible in developing multivariant models in this context. Clinical and MRI data of 58 patients with probable AD, 147 with MCI, and 94 normal controls (NCs) were collected. Baseline contourlet-based hippocampal MRI texture features, medical histories, symptoms, neuropsychological tests, volume-based morphometric (VBM) parameters based on MRI, and regional CMgl measurement based on fluorine-18 fluorodeoxyglucose-positron emission tomography were included to develop GP and PLS models to classify different groups of subjects. GPR1 model, which incorporated MRI texture features and was based on GPG, performed better in classifying different groups of subjects than GPR2 model, which used the same algorithm and had the same data as GPR1 except that MRI texture features were excluded. PLS model, which included the same variables as GPR1 but was based on the PLS algorithm, performed best among the three models. GPR1 accurately predicted 82.2% (51/62) of MCI convertors confirmed during the 2-year follow-up period, while this figure was 53 (85.5%) for PLS model. GPR1 and PLS models accurately predicted 58 (79.5%) vs. 61 (83.6%) of 73 patients with stable MCI, respectively. For seven patients with MCI who converted to NCs, PLS model accurately predicted all cases (100%), while GPR1 predicted six (85.7%) cases. The addition of contourlet-based MRI texture features to multivariant models can effectively improve the classification of AD and the prediction of MCI conversion to AD. Both GPR and LPS models performed well in the classification and predictive process, with the latter having significantly higher classification and predictive accuracies. Advances in knowledge: We combined contourlet-based hippocampal MRI texture features, medical histories, symptoms, neuropsychological tests, volume-based morphometric (VBM) parameters, and regional CMgl measurement to develop models using GP and PLS algorithms to classify AD patients.

摘要

本研究旨在评估基于轮廓波的海马磁共振成像(MRI)纹理特征是否可增加多变量模型的分类能力,从而改善阿尔茨海默病(AD)的分类和轻度认知障碍(MCI)向 AD 转化的预测,并评估在这种情况下高斯过程(GP)和偏最小二乘法(PLS)是否可用于开发多变量模型。共纳入 58 例 AD 患者、147 例 MCI 患者和 94 例正常对照者(NC)的临床和 MRI 数据。纳入基线基于轮廓波的海马 MRI 纹理特征、病史、症状、神经心理学测试、基于 MRI 的体积形态计量学(VBM)参数和基于氟-18 氟代脱氧葡萄糖正电子发射断层扫描的区域性 CMgl 测量值,以开发 GP 和 PLS 模型来对不同组别的受试者进行分类。GPR1 模型,纳入了 MRI 纹理特征,并基于 GP 构建,在对不同组别受试者进行分类方面优于 GPR2 模型,后者使用了与 GPR1 相同的算法和数据,只是排除了 MRI 纹理特征。PLS 模型,纳入了与 GPR1 相同的变量,但基于 PLS 算法,在这三种模型中表现最佳。在 2 年随访期间,GPR1 模型准确预测了 51 例(82.2%)MCI 转化者,而 PLS 模型的这一数字为 53 例(85.5%)。对于 73 例 MCI 稳定的患者,GPR1 和 PLS 模型的预测准确率分别为 58(79.5%)和 61(83.6%)。对于 7 例从 MCI 转化为 NC 的患者,PLS 模型准确预测了所有病例(100%),而 GPR1 预测了 6 例(85.7%)。基于轮廓波的 MRI 纹理特征的加入可有效提高 AD 的分类和 MCI 向 AD 转化的预测能力。GP 和 LPS 模型在分类和预测过程中表现良好,后者的分类和预测准确率显著更高。知识进展:我们结合了基于轮廓波的海马 MRI 纹理特征、病史、症状、神经心理学测试、基于体积的形态计量学(VBM)参数和区域性 CMgl 测量值,使用 GP 和 PLS 算法开发模型,对 AD 患者进行分类。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验