Suppr超能文献

一种基于激光雷达的负障碍物检测分析模型及基于物理模拟的数值验证

An Analytic Model for Negative Obstacle Detection with Lidar and Numerical Validation Using Physics-Based Simulation.

作者信息

Goodin Christopher, Carrillo Justin, Monroe J Gabriel, Carruth Daniel W, Hudson Christopher R

机构信息

Center for Advanced Vehicular Systems, Mississippi State University, Mississippi State, MS 39762, USA.

Geotechnical and Structures Laboratory, US Army Engineer Research and Development Center, Vicksburg, MS 39180, USA.

出版信息

Sensors (Basel). 2021 May 5;21(9):3211. doi: 10.3390/s21093211.

Abstract

Negative obstacles have long been a challenging aspect of autonomous navigation for ground vehicles. However, as terrestrial lidar sensors have become lighter and less costly, they have increasingly been deployed on small, low-flying UAV, affording an opportunity to use these sensors to aid in autonomous navigation. In this work, we develop an analytical model for predicting the ability of UAV or UGV mounted lidar sensors to detect negative obstacles. This analytical model improves upon past work in this area because it takes the sensor rotation rate and vehicle speed into account, as well as being valid for both large and small view angles. This analytical model is used to predict the influence of velocity on detection range for a negative obstacle and determine a limiting speed when accounting for vehicle stopping distance. Finally, the analytical model is validated with a physics-based simulator in realistic terrain. The results indicate that the analytical model is valid for altitudes above 10 m and show that there are drastic improvements in negative obstacle detection when using a UAV-mounted lidar. It is shown that negative obstacle detection ranges for various UAV-mounted lidar are 60-110 m, depending on the speed of the UAV and the type of lidar used. In contrast, detection ranges for UGV mounted lidar are found to be less than 10 m.

摘要

长期以来,负面障碍物一直是地面车辆自主导航面临的一个具有挑战性的方面。然而,随着地面激光雷达传感器变得更轻、成本更低,它们越来越多地被部署在小型低空无人机上,这为利用这些传感器辅助自主导航提供了机会。在这项工作中,我们开发了一个分析模型,用于预测无人机或无人地面车辆(UGV)搭载的激光雷达传感器检测负面障碍物的能力。该分析模型改进了该领域以往的工作,因为它考虑了传感器的旋转速率和车辆速度,并且对大视角和小视角均有效。该分析模型用于预测速度对负面障碍物检测范围的影响,并在考虑车辆制动距离时确定极限速度。最后,在真实地形中使用基于物理的模拟器对该分析模型进行了验证。结果表明,该分析模型在海拔10米以上有效,并且表明使用无人机搭载的激光雷达时,负面障碍物检测有显著改善。结果显示,根据无人机的速度和所使用激光雷达的类型,各种无人机搭载的激光雷达的负面障碍物检测范围为60 - 110米。相比之下,发现无人地面车辆搭载的激光雷达的检测范围小于10米。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7feb/8125519/ec7e21b36fe0/sensors-21-03211-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验