Acarer Seren, Pir İnci, Tüfekci Mertol, Türkoğlu Demirkol Güler, Tüfekci Neşe
Faculty of Engineering, Department of Environmental Engineering, İstanbul University-Cerrahpaşa, Avcılar Kampüsü, İstanbul 34320, Turkey.
Faculty of Mechanical Engineering, İstanbul Technical University, İstanbul 34437, Turkey.
Polymers (Basel). 2021 May 20;13(10):1661. doi: 10.3390/polym13101661.
In this study, polyethersulfone (PES) and polyvinylidene fluoride (PVDF) microfiltration membranes containing polyvinylpyrrolidone (PVP) with and without support layers of 130 and 150 μm thickness are manufactured using the phase inversion method and then experimentally characterised. For the characterisation of membranes, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and pore size analysis are performed, the contact angle and water content of membranes are measured and the tensile test is applied to membranes without support layers. Using the results obtained from the tensile tests, the mechanical properties of the halloysite nanotube (HNT) and nano-silicon dioxide (nano SiO) reinforced nanocomposite membranes are approximately determined by the Mori-Tanaka homogenisation method without applying any further mechanical tests. Then, plain polymeric and PES and PVDF based nanocomposite membranes are modelled using the finite element method to determine the effect of the geometry of the membrane on the mechanical behaviour for fifteen different geometries. The modelled membranes compared in terms of three different criteria: equivalent stress (von Mises), displacement, and in-plane principal strain. Based on the data obtained from the characterisation part of the study and the numerical analysis, the membrane with the best performance is determined. The most appropriate shape and material for a membrane for water treatment is specified as a 1% HNT doped PVDF based elliptical membrane.
在本研究中,采用相转化法制备了含有聚乙烯吡咯烷酮(PVP)且有无厚度为130和150μm支撑层的聚醚砜(PES)和聚偏氟乙烯(PVDF)微滤膜,然后对其进行了实验表征。为了表征膜,进行了傅里叶变换红外光谱(FTIR)、扫描电子显微镜(SEM)和孔径分析,测量了膜的接触角和含水量,并对无支撑层的膜进行了拉伸试验。利用拉伸试验获得的结果,通过Mori-Tanaka均匀化方法大致确定了埃洛石纳米管(HNT)和纳米二氧化硅(纳米SiO)增强纳米复合膜的力学性能,而无需进行任何进一步的力学测试。然后,使用有限元方法对普通聚合物膜以及基于PES和PVDF的纳米复合膜进行建模,以确定膜的几何形状对15种不同几何形状的力学行为的影响。对建模的膜根据三个不同标准进行比较:等效应力(von Mises)、位移和面内主应变。根据从研究的表征部分和数值分析获得的数据,确定性能最佳的膜。指定用于水处理的膜的最合适形状和材料为1% HNT掺杂的基于PVDF的椭圆形膜。