Suppr超能文献

配体依赖性构象转变在 GPCRs 的分子动力学轨迹中揭示了一种新的机器学习罕见事件检测协议。

Ligand-Dependent Conformational Transitions in Molecular Dynamics Trajectories of GPCRs Revealed by a New Machine Learning Rare Event Detection Protocol.

机构信息

Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA.

Institute for Computational Biomedicine, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA.

出版信息

Molecules. 2021 May 20;26(10):3059. doi: 10.3390/molecules26103059.

Abstract

Central among the tools and approaches used for ligand discovery and design are Molecular Dynamics (MD) simulations, which follow the dynamic changes in molecular structure in response to the environmental condition, interactions with other proteins, and the effects of ligand binding. The need for, and successes of, MD simulations in providing this type of essential information are well documented, but so are the challenges presented by the size of the resulting datasets encoding the desired information. The difficulty of extracting information on mechanistically important state-to-state transitions in response to ligand binding and other interactions is compounded by these being rare events in the MD trajectories of complex molecular machines, such as G-protein-coupled receptors (GPCRs). To address this problem, we have developed a protocol for the efficient detection of such events. We show that the novel Rare Event Detection (RED) protocol reveals functionally relevant and pharmacologically discriminating responses to the binding of different ligands to the 5-HTR orthosteric site in terms of clearly defined, structurally coherent, and temporally ordered conformational transitions. This information from the RED protocol offers new insights into specific ligand-determined functional mechanisms encoded in the MD trajectories, which opens a new and rigorously reproducible path to understanding drug activity with application in drug discovery.

摘要

在配体发现和设计中使用的工具和方法中,分子动力学(MD)模拟是核心方法之一,它可以跟踪分子结构在响应环境条件、与其他蛋白质相互作用以及配体结合的影响下的动态变化。MD 模拟在提供这种必要信息方面的需求和成功已经得到了充分的证明,但也存在着由编码所需信息的大型数据集所带来的挑战。在 MD 轨迹中,由于配体结合和其他相互作用引起的机制上重要的状态到状态的转变是罕见事件,因此从这些轨迹中提取信息的难度更大,这种情况在诸如 G 蛋白偶联受体(GPCR)等复杂分子机器中更为复杂。为了解决这个问题,我们开发了一种用于有效检测此类事件的方案。我们表明,新的罕见事件检测(RED)方案能够以明确定义的、结构上一致的、时间有序的构象转变的方式,揭示 5-HTR 正位点与不同配体结合时具有功能相关性和药理学区分性的反应。该 RED 方案提供了对 MD 轨迹中编码的特定配体确定的功能机制的新见解,为理解药物活性提供了一条新的、严格可重复的途径,并可应用于药物发现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1466/8161244/bafed9d39e2d/molecules-26-03059-g0A1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验