Department of Chemistry and Biochemistry, UCLA-DOE Institute for Genomics and Proteomics, Molecular Biology Institute, Quantitative and Computational Biology Institute, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, and Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, United States.
MRC Laboratory of Molecular Biology, Cambridge, United Kingdom.
Elife. 2020 Oct 21;9:e54895. doi: 10.7554/eLife.54895.
The >800 human G protein-coupled receptors (GPCRs) are responsible for transducing diverse chemical stimuli to alter cell state- and are the largest class of drug targets. Their myriad structural conformations and various modes of signaling make it challenging to understand their structure and function. Here, we developed a platform to characterize large libraries of GPCR variants in human cell lines with a barcoded transcriptional reporter of G protein signal transduction. We tested 7800 of 7828 possible single amino acid substitutions to the beta-2 adrenergic receptor (βAR) at four concentrations of the agonist isoproterenol. We identified residues specifically important for βAR signaling, mutations in the human population that are potentially loss of function, and residues that modulate basal activity. Using unsupervised learning, we identify residues critical for signaling, including all major structural motifs and molecular interfaces. We also find a previously uncharacterized structural latch spanning the first two extracellular loops that is highly conserved across Class A GPCRs and is conformationally rigid in both the inactive and active states of the receptor. More broadly, by linking deep mutational scanning with engineered transcriptional reporters, we establish a generalizable method for exploring pharmacogenomics, structure and function across broad classes of drug receptors.
800 个人类 G 蛋白偶联受体 (GPCR) 负责将各种化学刺激转化为改变细胞状态,是最大的一类药物靶点。它们具有多种结构构象和各种信号转导方式,这使得理解它们的结构和功能具有挑战性。在这里,我们开发了一个平台,用于在带有 G 蛋白信号转导转录报告器的人细胞系中对大量 GPCR 变体文库进行表征。我们在四个异丙肾上腺素激动剂浓度下测试了β-2 肾上腺素能受体 (βAR) 上 7800 个可能的单个氨基酸取代中的 7828 个。我们确定了βAR 信号传递的特定重要残基、人类群体中潜在的功能丧失突变以及调节基础活性的残基。使用无监督学习,我们确定了对信号传递至关重要的残基,包括所有主要的结构基序和分子界面。我们还发现了一个以前未表征的结构闩锁,横跨第一个和第二个细胞外环,在受体的非活性和活性状态下都具有高度的保守性。更广泛地说,通过将深度突变扫描与工程化转录报告器相结合,我们建立了一种可推广的方法,用于探索广泛的药物受体的药物基因组学、结构和功能。