Suppr超能文献

甲硫氨酸亚砜还原酶有助于[具体生物]中的厌氧发酵代谢 。 (注:原文中“in.”后面缺少具体内容)

Methionine Sulfoxide Reductases Contribute to Anaerobic Fermentative Metabolism in .

作者信息

Duport Catherine, Madeira Jean-Paul, Farjad Mahsa, Alpha-Bazin Béatrice, Armengaud Jean

机构信息

Département de Biologie, Avignon Université, INRAE, UMR SQPOV, F-84914 Avignon, France.

Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SPI, F-30200 Bagnols-sur-Cèze, France.

出版信息

Antioxidants (Basel). 2021 May 20;10(5):819. doi: 10.3390/antiox10050819.

Abstract

Reversible oxidation of methionine to methionine sulfoxide (Met(O)) is a common posttranslational modification occurring on proteins in all organisms under oxic conditions. Protein-bound Met(O) is reduced by methionine sulfoxide reductases, which thus play a significant antioxidant role. The facultative anaerobe produces two methionine sulfoxide reductases: MsrA and MsrAB. MsrAB has been shown to play a crucial physiological role under oxic conditions, but little is known about the role of MsrA. Here, we examined the antioxidant role of both MsrAB and MrsA under fermentative anoxic conditions, which are generally reported to elicit little endogenous oxidant stress. We created single- and double-mutant Δ strains. Compared to the wild-type and Δ mutant, single- (Δ) and double- (ΔΔ) mutants accumulated higher levels of Met(O) proteins, and their cellular and extracellular Met(O) proteomes were altered. The growth capacity and motility of mutant strains was limited, and their energy metabolism was altered. MsrA therefore appears to play a major physiological role compared to MsrAB, placing methionine sulfoxides at the center of the antioxidant system under anoxic fermentative conditions.

摘要

蛋氨酸可逆氧化为蛋氨酸亚砜(Met(O))是一种常见的翻译后修饰,在有氧条件下,所有生物体的蛋白质都会发生这种修饰。蛋白质结合的Met(O)由蛋氨酸亚砜还原酶还原,因此该酶发挥着重要的抗氧化作用。兼性厌氧菌产生两种蛋氨酸亚砜还原酶:MsrA和MsrAB。MsrAB已被证明在有氧条件下发挥关键的生理作用,但对MsrA的作用了解甚少。在这里,我们研究了MsrAB和MsrA在发酵性缺氧条件下的抗氧化作用,一般认为这种条件下内源性氧化应激较小。我们构建了单突变和双突变Δ菌株。与野生型和Δ突变体相比,单突变(Δ)和双突变(ΔΔ)菌株积累了更高水平的Met(O)蛋白,其细胞内和细胞外Met(O)蛋白质组发生了改变。突变菌株的生长能力和运动性受到限制,其能量代谢也发生了改变。因此,与MsrAB相比,MsrA似乎发挥着主要的生理作用,在缺氧发酵条件下,蛋氨酸亚砜处于抗氧化系统的核心位置。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e4ec/8161402/9ac2658562bb/antioxidants-10-00819-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验