Robotics, Vision and Control Laboratory (ROVIS), Transilvania University of Brasov, 500036 Brasov, Romania.
Elektrobit Automotive, 500365 Brasov, Romania.
Sensors (Basel). 2021 May 22;21(11):3606. doi: 10.3390/s21113606.
Autonomous mobile robots are usually faced with challenging situations when driving in complex environments. Namely, they have to recognize the static and dynamic obstacles, plan the driving path and execute their motion. For addressing the issue of perception and path planning, in this paper, we introduce OctoPath, which is an encoder-decoder deep neural network, trained in a self-supervised manner to predict the local optimal trajectory for the ego-vehicle. Using the discretization provided by a 3D octree environment model, our approach reformulates trajectory prediction as a classification problem with a configurable resolution. During training, OctoPath minimizes the error between the predicted and the manually driven trajectories in a given training dataset. This allows us to avoid the pitfall of regression-based trajectory estimation, in which there is an infinite state space for the output trajectory points. Environment sensing is performed using a 40-channel mechanical LiDAR sensor, fused with an inertial measurement unit and wheels odometry for state estimation. The experiments are performed both in simulation and real-life, using our own developed GridSim simulator and RovisLab's Autonomous Mobile Test Unit platform. We evaluate the predictions of OctoPath in different driving scenarios, both indoor and outdoor, while benchmarking our system against a baseline hybrid A-Star algorithm and a regression-based supervised learning method, as well as against a CNN learning-based optimal path planning method.
自主移动机器人在复杂环境中行驶时通常会面临具有挑战性的情况。也就是说,它们必须识别静态和动态障碍物,规划行驶路径并执行其运动。为了解决感知和路径规划问题,在本文中,我们引入了 OctoPath,这是一种编码器-解码器深度神经网络,通过自监督方式进行训练,以预测自车的局部最优轨迹。使用 3D 八叉树环境模型提供的离散化,我们的方法将轨迹预测重新表述为具有可配置分辨率的分类问题。在训练过程中,OctoPath 将预测轨迹和手动驾驶轨迹之间的误差最小化,从而在给定的训练数据集中。这使我们能够避免基于回归的轨迹估计的陷阱,在这种方法中,输出轨迹点的状态空间是无限的。环境感知使用 40 通道机械激光雷达传感器,与惯性测量单元和车轮里程计融合进行状态估计。实验在模拟和现实生活中进行,使用我们自己开发的 GridSim 模拟器和 RovisLab 的自主移动测试单元平台。我们在不同的驾驶场景中评估 OctoPath 的预测,包括室内和室外场景,并将我们的系统与基线混合 A-Star 算法、基于回归的监督学习方法以及基于 CNN 学习的最优路径规划方法进行基准测试。