Suppr超能文献

解析. 中的纤维素二糖和葡萄糖摄取。

Deciphering Cellodextrin and Glucose Uptake in .

机构信息

CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technologygrid.458500.c, Chinese Academy of Sciences, Qingdao, China.

Shandong Energy Institute, Shandong, Qingdao, China.

出版信息

mBio. 2022 Oct 26;13(5):e0147622. doi: 10.1128/mbio.01476-22. Epub 2022 Sep 7.

Abstract

Sugar uptake is of great significance in industrially relevant microorganisms. Clostridium thermocellum has extensive potential in lignocellulose biorefineries as an environmentally prominent, thermophilic, cellulolytic bacterium. The bacterium employs five putative ATP-binding cassette transporters which purportedly take up cellulose hydrolysates. Here, we first applied combined genetic manipulations and biophysical titration experiments to decipher the key glucose and cellodextrin transporters. gene inactivation of each transporter and calorimetric and nuclear magnetic resonance (NMR) titration of each putative sugar-binding protein with various saccharides supported the conclusion that only transporters A and B play the roles of glucose and cellodextrin transport, respectively. To gain insight into the structural mechanism of the transporter specificities, 11 crystal structures, both alone and in complex with appropriate saccharides, were solved for all 5 putative sugar-binding proteins, thus providing detailed specific interactions between the proteins and the corresponding saccharides. Considering the importance of transporter B as the major cellodextrin transporter, we further identified its cryptic, hitherto unknown ATPase-encoding gene as , which is located outside the transporter B gene cluster. The crystal structure of the ATPase was solved, showing that it represents a typical nucleotide-binding domain of the ATP-binding cassette (ABC) transporter. Moreover, we determined that the inducing effect of cellobiose (G2) and cellulose on cellulosome production could be eliminated by deletion of transporter B genes, suggesting the coupling of sugar transport and regulation of cellulosome components. This study provides key basic information on the sugar uptake mechanism of and will promote rational engineering of the bacterium for industrial application. Highly efficient sugar uptake is important to microbial cell factories, and sugar transporters are therefore of great interest in the study of industrially relevant microorganisms. Clostridium thermocellum is a lignocellulolytic bacterium known for its multienzyme complex, the cellulosome, which is of great potential value in lignocellulose biorefinery. In this study, we clarify the function and mechanism of substrate specificity of the five reported putative sugar transporters using genetic, biophysical, and structural methods. Intriguingly, the results showed that only one of them, transporter B, is the major cellodextrin transporter, whereas another, transporter A, represents the major glucose transporter. Considering the importance of transporter B, we further identified the missing ATPase gene of transporter B and revealed the correlation between transporter B and cellulosome production. Revealing the mechanism by which utilizes cellodextrins will help pave the way for engineering the strain for industrial applications.

摘要

糖摄取对于工业相关微生物具有重要意义。产热梭菌作为一种环境突出、嗜热、纤维素分解细菌,在木质纤维素生物炼制厂中有广泛的应用潜力。该细菌利用五个假定的 ATP 结合盒转运蛋白来摄取纤维素水解物。在这里,我们首次应用组合遗传操作和生物物理滴定实验来解析关键的葡萄糖和纤维二糖转运蛋白。对每个转运蛋白进行基因失活,并对每个假定的糖结合蛋白与各种糖进行量热和核磁共振(NMR)滴定,支持以下结论:只有转运蛋白 A 和 B 分别作为葡萄糖和纤维二糖的转运蛋白发挥作用。为了深入了解转运蛋白特异性的结构机制,我们解析了所有 5 个假定的糖结合蛋白的 11 个晶体结构,包括单独的和与适当糖复合物的晶体结构,从而提供了蛋白与相应糖之间的详细特定相互作用。鉴于转运蛋白 B 作为主要纤维二糖转运蛋白的重要性,我们进一步确定了其隐藏的、迄今未知的 ATP 酶编码基因作为 ,该基因位于转运蛋白 B 基因簇之外。ATP 酶的晶体结构得到了解析,表明它代表了 ATP 结合盒(ABC)转运蛋白的典型核苷酸结合结构域。此外,我们发现通过删除转运蛋白 B 基因,可以消除纤维二糖(G2)和纤维素对细胞外酶复合物产生的诱导作用,这表明糖转运与细胞外酶复合物成分的调节相偶联。本研究提供了产热梭菌糖摄取机制的关键基础信息,并将促进对该细菌进行工业应用的合理工程改造。在微生物细胞工厂中,高效的糖摄取非常重要,因此糖转运蛋白是研究工业相关微生物的重要目标。产热梭菌是一种木质纤维素分解细菌,以其多酶复合物——细胞外酶复合物而闻名,该复合物在木质纤维素生物炼制厂中有很大的潜在价值。在这项研究中,我们使用遗传、生物物理和结构方法阐明了报告的五个假定糖转运蛋白的功能和底物特异性机制。有趣的是,结果表明,只有其中一个转运蛋白 B 是主要的纤维二糖转运蛋白,而另一个转运蛋白 A 则是主要的葡萄糖转运蛋白。考虑到转运蛋白 B 的重要性,我们进一步确定了缺失的转运蛋白 B 的 ATP 酶基因,并揭示了转运蛋白 B 与细胞外酶复合物产生之间的相关性。揭示 利用纤维二糖的机制将有助于为工程菌株的工业应用铺平道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/704b/9601137/853390def0ed/mbio.01476-22-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验