Suppr超能文献

一种基于改进麻雀搜索算法和支持向量机的模拟电路故障诊断方法。

An analog circuit fault diagnosis method using improved sparrow search algorithm and support vector machine.

作者信息

Wang Guohua, Tu Yiwei, Nie Jing

机构信息

School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China.

出版信息

Rev Sci Instrum. 2024 May 1;95(5). doi: 10.1063/5.0210515.

Abstract

In analog circuits, component tolerances and circuit nonlinearity pose obstacles to fault diagnosis. To solve this problem, a soft fault diagnosis method based on Sparrow Search Algorithm (SSA) and Support Vector Machine (SVM) is used. In this study, ISSA is obtained by optimization using four strategies for SSA deficiency. Twenty-three benchmark functions are used for optimization experiments, and ISSA converges faster, more accurately, and with better robustness than other swarm intelligence algorithms. Finally, ISSA is used to optimize the SVM parameters and establish the ISSA-SVM fault diagnosis model. In the Sallen-key test circuit diagnosis experiments, the correct fault diagnosis rates of SSA-SVM and ISSA-SVM are 97.41% and 98.15%, respectively. The results show that the optimized ISSA-SVM model has a good analog circuit fault diagnosis with an increase in diagnostic accuracy.

摘要

在模拟电路中,元件公差和电路非线性给故障诊断带来了障碍。为了解决这个问题,采用了一种基于麻雀搜索算法(SSA)和支持向量机(SVM)的软故障诊断方法。在本研究中,针对SSA的不足,采用四种策略对其进行优化得到改进麻雀搜索算法(ISSA)。使用23个基准函数进行优化实验,结果表明ISSA比其他群智能算法收敛更快、更准确、鲁棒性更好。最后,利用ISSA优化SVM参数,建立了ISSA-SVM故障诊断模型。在Sallen-key测试电路诊断实验中,SSA-SVM和ISSA-SVM的正确故障诊断率分别为97.41%和98.15%。结果表明,优化后的ISSA-SVM模型具有良好的模拟电路故障诊断能力,诊断精度有所提高。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验