Wang Guohua, Tu Yiwei, Nie Jing
School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China.
Rev Sci Instrum. 2024 May 1;95(5). doi: 10.1063/5.0210515.
In analog circuits, component tolerances and circuit nonlinearity pose obstacles to fault diagnosis. To solve this problem, a soft fault diagnosis method based on Sparrow Search Algorithm (SSA) and Support Vector Machine (SVM) is used. In this study, ISSA is obtained by optimization using four strategies for SSA deficiency. Twenty-three benchmark functions are used for optimization experiments, and ISSA converges faster, more accurately, and with better robustness than other swarm intelligence algorithms. Finally, ISSA is used to optimize the SVM parameters and establish the ISSA-SVM fault diagnosis model. In the Sallen-key test circuit diagnosis experiments, the correct fault diagnosis rates of SSA-SVM and ISSA-SVM are 97.41% and 98.15%, respectively. The results show that the optimized ISSA-SVM model has a good analog circuit fault diagnosis with an increase in diagnostic accuracy.
在模拟电路中,元件公差和电路非线性给故障诊断带来了障碍。为了解决这个问题,采用了一种基于麻雀搜索算法(SSA)和支持向量机(SVM)的软故障诊断方法。在本研究中,针对SSA的不足,采用四种策略对其进行优化得到改进麻雀搜索算法(ISSA)。使用23个基准函数进行优化实验,结果表明ISSA比其他群智能算法收敛更快、更准确、鲁棒性更好。最后,利用ISSA优化SVM参数,建立了ISSA-SVM故障诊断模型。在Sallen-key测试电路诊断实验中,SSA-SVM和ISSA-SVM的正确故障诊断率分别为97.41%和98.15%。结果表明,优化后的ISSA-SVM模型具有良好的模拟电路故障诊断能力,诊断精度有所提高。