Scarcello Andrea, Alessandro Francesca, Cruz Salazar Yolenny, Arias Polanco Melvin, Vacacela Gomez Cristian, Tene Talia, Guevara Marco, Bellucci Stefano, Straface Salvatore, Caputi Lorenzo S
Surface Nanoscience Group, Department of Physics, University of Calabria, 87036 Rende, Italy.
UNICARIBE Research Center, University of Calabria, 87036 Rende, Italy.
Nanomaterials (Basel). 2023 Dec 26;14(1):71. doi: 10.3390/nano14010071.
The development of efficient energy storage systems is critical in the transition towards sustainable energy solutions. In this context, the present work investigates the viability of using orange juice, as a promising and sustainable precursor, for the synthesis of activated carbon electrodes for supercapacitor technologies. Through the carbonization-activation process and controlling the preparation parameters (KOH ratio and activation time), we have tailored the specific surface area (SSA) and pore size distribution (PSD) of the resulting carbon materials-crucial parameters that support supercapacitive performance. Several spectroscopic, morphological, and electrochemical techniques are used to characterize the obtained carbon materials. In particular, our optimization efforts revealed that a 5:1 KOH ratio with an activation time up to 120 min produced the highest SSA of about 2203 m/g. Employing these optimal conditions, we fabricated symmetric coin cell supercapacitors using NaSO as the electrolyte, which exhibited interesting specific capacitance (~56 F/g). Durability testing over 5000 cycles sustained the durability of the as-made activated carbon electrodes, suggesting an excellent retention of specific capacitance. This study not only advances the field of energy storage by introducing a renewable material for electrode fabrication but also contributes to the broader goal of waste reduction through the repurposing of food byproducts.
高效储能系统的发展对于向可持续能源解决方案的转型至关重要。在此背景下,本工作研究了将橙汁作为一种有前景的可持续前驱体用于合成超级电容器技术的活性炭电极的可行性。通过碳化-活化过程并控制制备参数(氢氧化钾比例和活化时间),我们定制了所得碳材料的比表面积(SSA)和孔径分布(PSD),这些是支持超级电容性能的关键参数。使用了几种光谱、形态和电化学技术来表征所获得的碳材料。特别是,我们的优化工作表明,氢氧化钾比例为5:1且活化时间长达120分钟时,产生了约2203 m²/g的最高比表面积。采用这些最佳条件,我们使用Na₂SO₄作为电解质制造了对称扣式电池超级电容器,其表现出有趣的比电容(约56 F/g)。超过5000次循环的耐久性测试维持了所制备的活性炭电极的耐久性,表明比电容保持优异。这项研究不仅通过引入用于电极制造的可再生材料推动了储能领域的发展,还通过将食品副产品重新利用为减少废物这一更广泛的目标做出了贡献。