文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于深度学习的无接触心率测量方法综述。

A Review of Deep Learning-Based Contactless Heart Rate Measurement Methods.

机构信息

Department of Electrical and Computer Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA.

出版信息

Sensors (Basel). 2021 May 27;21(11):3719. doi: 10.3390/s21113719.


DOI:10.3390/s21113719
PMID:34071736
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8198867/
Abstract

The interest in contactless or remote heart rate measurement has been steadily growing in healthcare and sports applications. Contactless methods involve the utilization of a video camera and image processing algorithms. Recently, deep learning methods have been used to improve the performance of conventional contactless methods for heart rate measurement. After providing a review of the related literature, a comparison of the deep learning methods whose codes are publicly available is conducted in this paper. The public domain UBFC dataset is used to compare the performance of these deep learning methods for heart rate measurement. The results obtained show that the deep learning method PhysNet generates the best heart rate measurement outcome among these methods, with a mean absolute error value of 2.57 beats per minute and a mean square error value of 7.56 beats per minute.

摘要

在医疗保健和运动应用中,人们对非接触式或远程心率测量的兴趣一直在稳步增长。非接触式方法涉及使用摄像机和图像处理算法。最近,深度学习方法已被用于提高传统非接触式心率测量方法的性能。在提供相关文献综述后,本文对可公开获取代码的深度学习方法进行了比较。UBFC 公共数据集用于比较这些深度学习方法在心率测量方面的性能。结果表明,在这些方法中,PhysNet 深度学习方法的心率测量结果最佳,平均绝对误差值为 2.57 次/分钟,均方误差值为 7.56 次/分钟。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64b3/8198867/b427a8f9fa79/sensors-21-03719-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64b3/8198867/fecfd65ae28a/sensors-21-03719-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64b3/8198867/d10abca8e906/sensors-21-03719-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64b3/8198867/98a792683909/sensors-21-03719-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64b3/8198867/8a3e903edf06/sensors-21-03719-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64b3/8198867/5175b7f31a21/sensors-21-03719-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64b3/8198867/63e4f92270cd/sensors-21-03719-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64b3/8198867/89ef1b706445/sensors-21-03719-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64b3/8198867/6c122693ded2/sensors-21-03719-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64b3/8198867/7a9191a0b803/sensors-21-03719-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64b3/8198867/d85cc1b7f9a8/sensors-21-03719-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64b3/8198867/d7f963640225/sensors-21-03719-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64b3/8198867/95ac9768c38e/sensors-21-03719-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64b3/8198867/952bd50abcf0/sensors-21-03719-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64b3/8198867/f335220987f5/sensors-21-03719-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64b3/8198867/b427a8f9fa79/sensors-21-03719-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64b3/8198867/fecfd65ae28a/sensors-21-03719-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64b3/8198867/d10abca8e906/sensors-21-03719-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64b3/8198867/98a792683909/sensors-21-03719-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64b3/8198867/8a3e903edf06/sensors-21-03719-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64b3/8198867/5175b7f31a21/sensors-21-03719-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64b3/8198867/63e4f92270cd/sensors-21-03719-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64b3/8198867/89ef1b706445/sensors-21-03719-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64b3/8198867/6c122693ded2/sensors-21-03719-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64b3/8198867/7a9191a0b803/sensors-21-03719-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64b3/8198867/d85cc1b7f9a8/sensors-21-03719-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64b3/8198867/d7f963640225/sensors-21-03719-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64b3/8198867/95ac9768c38e/sensors-21-03719-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64b3/8198867/952bd50abcf0/sensors-21-03719-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64b3/8198867/f335220987f5/sensors-21-03719-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64b3/8198867/b427a8f9fa79/sensors-21-03719-g015.jpg

相似文献

[1]
A Review of Deep Learning-Based Contactless Heart Rate Measurement Methods.

Sensors (Basel). 2021-5-27

[2]
Deep Learning Methods for Remote Heart Rate Measurement: A Review and Future Research Agenda.

Sensors (Basel). 2021-9-20

[3]
PPGnet: Deep Network for Device Independent Heart Rate Estimation from Photoplethysmogram.

Annu Int Conf IEEE Eng Med Biol Soc. 2019-7

[4]
CorNET: Deep Learning Framework for PPG-Based Heart Rate Estimation and Biometric Identification in Ambulant Environment.

IEEE Trans Biomed Circuits Syst. 2019-1-10

[5]
Respiratory Rate Estimation using PPG: A Deep Learning Approach.

Annu Int Conf IEEE Eng Med Biol Soc. 2020-7

[6]
Remote Photoplethysmography and Heart Rate Estimation by Dynamic Region of Interest Tracking.

Annu Int Conf IEEE Eng Med Biol Soc. 2022-7

[7]
Biometric Signals Estimation Using Single Photon Camera and Deep Learning.

Sensors (Basel). 2020-10-27

[8]
Deep learning and remote photoplethysmography powered advancements in contactless physiological measurement.

Front Bioeng Biotechnol. 2024-7-17

[9]
Deep PPG: Large-Scale Heart Rate Estimation with Convolutional Neural Networks.

Sensors (Basel). 2019-7-12

[10]
Restoration of Remote PPG Signal through Correspondence with Contact Sensor Signal.

Sensors (Basel). 2021-9-2

引用本文的文献

[1]
Diffusion-Phys: noise-robust heart rate estimation from facial videos via diffusion models.

Biomed Eng Lett. 2025-4-9

[2]
Comparison of Machine Learning Algorithms for Heartbeat Detection Based on Accelerometric Signals Produced by a Smart Bed.

Sensors (Basel). 2024-3-15

[3]
Capturing the pulse: a state-of-the-art review on camera-based jugular vein assessment.

Biomed Opt Express. 2023-11-28

[4]
A System for Monitoring Animals Based on Behavioral Information and Internal State Information.

Animals (Basel). 2024-1-16

[5]
Frugal Heart Rate Correction Method for Scalable Health and Safety Monitoring in Construction Sites.

Sensors (Basel). 2023-7-17

[6]
Photoplethysmography upon cold stress-impact of measurement site and acquisition mode.

Front Physiol. 2023-6-1

[7]
Accuracy of Self-Injection Locking Radar System for Vital Signs Detection During the COVID-19 Pandemic at a Hospital in Taiwan: Measuring Vital Signs Accurately with SIL Radar for Hospital Healthcare.

Med Sci Monit. 2023-5-15

[8]
Contactless Camera-Based Heart Rate and Respiratory Rate Monitoring Using AI on Hardware.

Sensors (Basel). 2023-5-7

[9]
An Evaluation of Non-Contact Photoplethysmography-Based Methods for Remote Respiratory Rate Estimation.

Sensors (Basel). 2023-3-23

[10]
A novel contact-free atrial fibrillation monitor: a pilot study.

Eur Heart J Digit Health. 2021-12-31

本文引用的文献

[1]
Biometric Signals Estimation Using Single Photon Camera and Deep Learning.

Sensors (Basel). 2020-10-27

[2]
Assessing the Quality of Heart Rate Variability Estimated from Wrist and Finger PPG: A Novel Approach Based on Cross-Mapping Method.

Sensors (Basel). 2020-6-2

[3]
Feasible assessment of recovery and cardiovascular health: accuracy of nocturnal HR and HRV assessed via ring PPG in comparison to medical grade ECG.

Physiol Meas. 2020-5-7

[4]
Analysis of CNN-based remote-PPG to understand limitations and sensitivities.

Biomed Opt Express. 2020-2-7

[5]
iPhys: An Open Non-Contact Imaging-Based Physiological Measurement Toolbox.

Annu Int Conf IEEE Eng Med Biol Soc. 2019-7

[6]
Photoplethysmography based atrial fibrillation detection: a review.

NPJ Digit Med. 2020-1-10

[7]
Non-contact physiological monitoring of preterm infants in the Neonatal Intensive Care Unit.

NPJ Digit Med. 2019-12-12

[8]
Deep PPG: Large-Scale Heart Rate Estimation with Convolutional Neural Networks.

Sensors (Basel). 2019-7-12

[9]
Heart Rate Monitoring in Newborn Babies: A Systematic Review.

Neonatology. 2019-6-27

[10]
A review on wearable photoplethysmography sensors and their potential future applications in health care.

Int J Biosens Bioelectron. 2018

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索