Otieno Sebastian, Lanterna Anabel E, Mack John, Derese Solomon, Amuhaya Edith K, Nyokong Tebello, Scaiano Juan C
Centre for Advanced Materials Research (CAMaR), Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, ON K1N 6N5, Canada.
School of Pharmacy and Health Sciences, United States International University-Africa, Nairobi 00800, Kenya.
Molecules. 2021 May 24;26(11):3131. doi: 10.3390/molecules26113131.
The absence of a secure long-term sustainable energy supply is recognized as a major worldwide technological challenge. The generation of H through photocatalysis is an environmentally friendly alternative that can help solve the energy problem. Thus, the development of semiconductor materials that can absorb solar light is an attractive approach. TiO has a wide bandgap that suffers from no activity in the visible spectrum, limiting its use of solar radiation. In this research, the semiconductor absorption profile was extended into the visible region of the solar spectrum by preparing porphyrin-TiO (-TiO) composites of -tetra(4-bromophenyl)porphyrin () and -tetra(5-bromo-2-thienyl)porphyrin () and their In(III), Zn(II) and Ga(III) metal complexes. Density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations were performed on the porphyrins to gain insight into their electron injection capability. The results demonstrate that -TiO systems merit further in-depth study for applications that require efficient photocatalytic H generation.
缺乏安全的长期可持续能源供应被认为是一项重大的全球技术挑战。通过光催化产生氢气是一种环境友好的替代方法,有助于解决能源问题。因此,开发能够吸收太阳光的半导体材料是一种有吸引力的途径。二氧化钛具有较宽的带隙,在可见光谱中没有活性,限制了其对太阳辐射的利用。在本研究中,通过制备四(4-溴苯基)卟啉()和四(5-溴-2-噻吩基)卟啉()及其铟(III)、锌(II)和镓(III)金属配合物的卟啉-二氧化钛(-TiO)复合材料,将半导体吸收谱扩展到太阳光谱的可见光区域。对卟啉进行了密度泛函理论(DFT)和含时密度泛函理论(TD-DFT)计算,以深入了解其电子注入能力。结果表明,-TiO体系在需要高效光催化产氢的应用中值得进一步深入研究。