Departamento de Química Física and Instituto Universitario de Materiales de Alicante (IUMA), University of Alicante, Ap. 99, 03080, Alicante, Spain.
Analytical Chemistry - Center for Electrochemical Sciences, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsst. 150, D-44780, Bochum, Germany.
Talanta. 2021 Sep 1;232:122386. doi: 10.1016/j.talanta.2021.122386. Epub 2021 Apr 16.
Development of effective direct electron transfer is considered an interesting platform to obtain high performance bioelectrodes. Therefore, designing of scalable and cost-effective immobilization routes that promotes correct direct electrical contacting between the electrode material and the redox enzyme is still required. As we present here, electrochemical entrapment of pyrroloquinoline quinone-dependent glucose dehydrogenase (PQQ-GDH) on single-wall carbon nanotube (SWCNT)-modified electrodes was carried out in a single step during electrooxidation of para-aminophenyl phosphonic acid (4-APPA) to obtain active bioelectrodes. The adequate interaction between SWCNTs and the enzyme can be achieved by making use of phosphorus groups introduced during the electrochemical co-deposition of films, improving the electrocatalytic activity towards glucose oxidation. Two different procedures were investigated for electrode fabrication, namely the entrapment of reconstituted holoenzyme (PQQ-GDH) and the entrapment of apoenzyme (apo-GDH) followed by subsequent in situ reconstitution with the redox cofactor PQQ. In both cases, PQQ-GDH preserves its electrocatalytic activity towards glucose oxidation. Moreover, in comparison with a conventional drop-casting method, an important enhancement in sensitivity was obtained for glucose oxidation (981.7 ± 3.5 nA mM) using substantially lower amounts of enzyme and cofactor (PQQ). The single step electrochemical entrapment in presence of 4-APPA provides a simple method for the fabrication of enzymatic bioelectrodes.
发展有效的直接电子转移被认为是获得高性能生物电极的一个有趣的平台。因此,仍然需要设计可扩展且具有成本效益的固定化途径,以促进电极材料和氧化还原酶之间的正确直接电接触。正如我们在这里展示的,在电化学氧化对氨基苯膦酸(4-APPA)的过程中,在单壁碳纳米管(SWCNT)修饰电极上一步进行电化学捕获吡咯喹啉醌依赖型葡萄糖脱氢酶(PQQ-GDH),以获得活性生物电极。通过利用电化学共沉积过程中引入的磷基团与酶进行适当的相互作用,可以提高对葡萄糖氧化的电催化活性。研究了两种不同的电极制备程序,即再组装全酶(PQQ-GDH)的捕获和apoenzyme(apo-GDH)的捕获,然后用氧化还原辅因子 PQQ 进行原位再组装。在这两种情况下,PQQ-GDH 都保持其对葡萄糖氧化的电催化活性。此外,与传统的滴铸方法相比,使用低得多的酶和辅因子(PQQ)量,对葡萄糖氧化的灵敏度得到了显著提高(981.7 ± 3.5 nA mM)。在 4-APPA 存在下的一步电化学捕获为酶生物电极的制备提供了一种简单的方法。