Canadian Centre for Climate Modelling and Analysis, Environment and Climate Change Canada, Victoria, BC V8W 2Y2, Canada;
Canadian Centre for Climate Modelling and Analysis, Environment and Climate Change Canada, Victoria, BC V8W 2Y2, Canada.
Proc Natl Acad Sci U S A. 2021 Jun 8;118(23). doi: 10.1073/pnas.2016549118.
Forcing due to solar and volcanic variability, on the natural side, and greenhouse gas and aerosol emissions, on the anthropogenic side, are the main inputs to climate models. Reliable climate model simulations of past and future climate change depend crucially upon them. Here we analyze large ensembles of simulations using a comprehensive Earth System Model to quantify uncertainties in global climate change attributable to differences in prescribed forcings. The different forcings considered here are those used in the two most recent phases of the Coupled Model Intercomparison Project (CMIP), namely CMIP5 and CMIP6. We show significant differences in simulated global surface air temperature due to volcanic aerosol forcing in the second half of the 19th century and in the early 21st century. The latter arise from small-to-moderate eruptions incorporated in CMIP6 simulations but not in CMIP5 simulations. We also find significant differences in global surface air temperature and Arctic sea ice area due to anthropogenic aerosol forcing in the second half of the 20th century and early 21st century. These differences are as large as those obtained in different versions of an Earth System Model employing identical forcings. In simulations from 2015 to 2100, we find significant differences in the rates of projected global warming arising from CMIP5 and CMIP6 concentration pathways that differ slightly but are equivalent in terms of their nominal radiative forcing levels in 2100. Our results highlight the influence of assumptions about natural and anthropogenic aerosol loadings on carbon budgets, the likelihood of meeting Paris targets, and the equivalence of future forcing scenarios.
由于太阳和火山变化(自然方面)以及温室气体和气溶胶排放(人为方面)的强迫作用,是气候模型的主要输入。可靠的气候模型对过去和未来气候变化的模拟,在很大程度上取决于这些强迫作用。在这里,我们使用一个综合地球系统模型来分析大量的模拟集合,以量化归因于规定强迫作用差异的全球气候变化不确定性。这里考虑的不同强迫作用是耦合模式比较计划(CMIP)最近两个阶段(CMIP5 和 CMIP6)中使用的强迫作用。我们表明,由于 19 世纪下半叶和 21 世纪初火山气溶胶强迫作用的不同,模拟的全球地表空气温度存在显著差异。后者源于 CMIP6 模拟中包含的小到中等规模的喷发,但在 CMIP5 模拟中没有。我们还发现,由于 20 世纪下半叶和 21 世纪初人为气溶胶强迫作用的不同,全球地表空气温度和北极海冰面积存在显著差异。这些差异与使用相同强迫作用的不同地球系统模型版本所获得的差异一样大。在 2015 年至 2100 年的模拟中,我们发现由于 CMIP5 和 CMIP6 浓度途径的不同,预计全球变暖的速度存在显著差异,这些途径在 2100 年的名义辐射强迫水平上略有不同,但等效。我们的结果强调了对自然和人为气溶胶负荷的假设对碳预算、实现巴黎目标的可能性以及未来强迫情景的等效性的影响。