Physical Oceanography Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543.
Joint Institute for Regional Earth System Science and Engineering, University of California at Los Angeles, Los Angeles, CA 90095.
Proc Natl Acad Sci U S A. 2023 May 16;120(20):e2300758120. doi: 10.1073/pnas.2300758120. Epub 2023 May 8.
In 1967, scientists used a simple climate model to predict that human-caused increases in atmospheric CO should warm Earth's troposphere and cool the stratosphere. This important signature of anthropogenic climate change has been documented in weather balloon and satellite temperature measurements extending from near-surface to the lower stratosphere. Stratospheric cooling has also been confirmed in the mid to upper stratosphere, a layer extending from roughly 25 to 50 km above the Earth's surface (S). To date, however, S temperatures have not been used in pattern-based attribution studies of anthropogenic climate change. Here, we perform such a "fingerprint" study with satellite-derived patterns of temperature change that extend from the lower troposphere to the upper stratosphere. Including S information increases signal-to-noise ratios by a factor of five, markedly enhancing fingerprint detectability. Key features of this global-scale human fingerprint include stratospheric cooling and tropospheric warming at all latitudes, with stratospheric cooling amplifying with height. In contrast, the dominant modes of internal variability in S have smaller-scale temperature changes and lack uniform sign. These pronounced spatial differences between S signal and noise patterns are accompanied by large cooling of S (1 to 2[Formula: see text]C over 1986 to 2022) and low S noise levels. Our results explain why extending "vertical fingerprinting" to the mid to upper stratosphere yields incontrovertible evidence of human effects on the thermal structure of Earth's atmosphere.
1967 年,科学家们使用一个简单的气候模型预测,人为增加大气中的 CO2 含量应该会使地球的对流层升温,平流层降温。从近地面到平流层低层的气象气球和卫星温度测量已经记录到了人为气候变化的这一重要特征。平流层中层和高层的冷却也得到了证实,这是一个从地球表面上方约 25 到 50 公里的层(S)。然而,迄今为止,S 温度并未用于人为气候变化的基于模式的归因研究。在这里,我们使用卫星衍生的温度变化模式进行了这样的“指纹”研究,这些模式从对流层低层延伸到平流层高层。包括 S 信息可将信号与噪声的比值提高五倍,显著增强指纹可探测性。这种全球规模的人为指纹的关键特征包括所有纬度的平流层冷却和对流层升温,且平流层冷却随高度放大。相比之下,S 中内部变率的主要模式具有较小尺度的温度变化且缺乏统一的特征。S 信号和噪声模式之间的这些显著空间差异伴随着 S 的大幅冷却(1986 年至 2022 年间降温 1 到 2°C)和低 S 噪声水平。我们的研究结果解释了为什么将“垂直指纹”扩展到平流层中层和高层会产生无可争议的证据,证明人类活动对地球大气热结构的影响。