Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead, New South Wales, Australia.
Westmead Hospital, Westmead, New South Wales, Australia.
mSphere. 2021 Jun 30;6(3):e0042421. doi: 10.1128/mSphere.00424-21. Epub 2021 Jun 2.
A putative type II toxin-antitoxin (TA) module almost exclusively associated with conjugative IncC plasmids is homologous to the family of TA systems found in chromosomes and plasmids of several species of bacteria. Despite the clinical significance and strong association with high-profile antimicrobial resistance (AMR) genes, the TA system of IncC plasmids remains largely uncharacterized. In this study, we present evidence that IncC plasmids encode a bona fide HigB-like toxin that strongly inhibits bacterial growth and results in cell elongation in Escherichia coli. IncC HigB toxin acts as a ribosome-dependent endoribonuclease that significantly reduces the transcript abundance of a subset of adenine-rich mRNA transcripts. A glycine residue at amino acid position 64 is highly conserved in HigB toxins from different bacterial species, and its replacement with valine (G64V) abolishes the toxicity and the mRNA cleavage activity of the IncC HigB toxin. The IncC plasmid TA system functions as an effective addiction module that maintains plasmid stability in an antibiotic-free environment. This addiction module is the only TA system that we identified in the IncC backbone and appears essential for the stable maintenance of IncC plasmids. We also observed that exposure to subinhibitory concentrations of ciprofloxacin, a DNA-damaging fluoroquinolone antibiotic, results in elevated expression, which raises interesting questions about its regulatory mechanisms. A better understanding of this type TA module potentially allows for its subversion as part of an AMR eradication strategy. Toxin-antitoxin (TA) systems play vital roles in maintaining plasmids in bacteria. Plasmids with incompatibility group C are large plasmids that disseminate via conjugation and carry high-profile antibiotic resistance genes. We present experimental evidence that IncC plasmids carry a TA system that functions as an effective addiction module and maintains plasmid stability in an antibiotic-free environment. The toxin of IncC plasmids acts as an endoribonuclease that targets a subset of mRNA transcripts. Overexpressing the IncC toxin gene strongly inhibits bacterial growth and results in cell elongation in Escherichia coli hosts. We also identify a conserved amino acid residue in the toxin protein that is essential for its toxicity and show that the expression of this TA system is activated by a DNA-damaging antibiotic, ciprofloxacin. This mobile TA system may contribute to managing bacterial stress associated with DNA-damaging antibiotics.
一种假定的 II 型毒素-抗毒素(TA)模块几乎只与可移动的 IncC 质粒相关,与在几种细菌的染色体和质粒中发现的 TA 系统家族同源。尽管 IncC 质粒与重要的抗生素耐药性(AMR)基因密切相关,但 IncC 质粒的 TA 系统在很大程度上仍未被描述。在这项研究中,我们提供的证据表明,IncC 质粒编码一种真正的 HigB 样毒素,该毒素强烈抑制大肠杆菌的生长并导致细胞伸长。IncC HigB 毒素作为一种核糖体依赖性内切核酸酶发挥作用,可显著降低一组富含腺嘌呤的 mRNA 转录本的转录丰度。在不同细菌物种的 HigB 毒素中,氨基酸位置 64 处的甘氨酸残基高度保守,用缬氨酸(G64V)取代该残基会使 IncC HigB 毒素的毒性和 mRNA 切割活性丧失。IncC 质粒的 TA 系统作为一种有效的成瘾模块,在无抗生素的环境中维持质粒的稳定性。该成瘾模块是我们在 IncC 骨架中唯一发现的 TA 系统,对于 IncC 质粒的稳定维持似乎是必不可少的。我们还观察到,亚抑制浓度的环丙沙星(一种破坏 DNA 的氟喹诺酮类抗生素)的暴露会导致表达水平升高,这引发了关于其调控机制的有趣问题。更好地理解这种 TA 模块有可能将其颠覆为 AMR 消除策略的一部分。毒素-抗毒素(TA)系统在维持细菌中的质粒中起着至关重要的作用。具有兼容性组 C 的质粒是通过接合传播的大型质粒,并且携带高知名度的抗生素耐药基因。我们提供了实验证据,表明 IncC 质粒携带一种 TA 系统,该系统作为一种有效的成瘾模块,在无抗生素的环境中维持质粒的稳定性。IncC 质粒的毒素作为一种内切核酸酶发挥作用,针对一组 mRNA 转录本。在大肠杆菌宿主中,过表达 IncC 毒素基因强烈抑制细菌生长并导致细胞伸长。我们还鉴定了毒素蛋白中的一个保守氨基酸残基,该残基对其毒性至关重要,并表明该 TA 系统的表达被破坏 DNA 的抗生素环丙沙星激活。这种移动 TA 系统可能有助于管理与破坏 DNA 的抗生素相关的细菌应激。