Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana.
Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana.
Am J Physiol Endocrinol Metab. 2020 Aug 1;319(2):E388-E400. doi: 10.1152/ajpendo.00066.2020. Epub 2020 Jun 16.
Replacement of islets/β-cells that provide long-lasting glucose-sensing and insulin-releasing functions has the potential to restore extended glycemic control in individuals with type 1 diabetes. Unfortunately, persistent challenges preclude such therapies from widespread clinical use, including cumbersome administration via portal vein infusion, significant loss of functional islet mass upon administration, limited functional longevity, and requirement for systemic immunosuppression. Previously, fibril-forming type I collagen (oligomer) was shown to support subcutaneous injection and in situ encapsulation of syngeneic islets within diabetic mice, with rapid (<24 h) reversal of hyperglycemia and maintenance of euglycemia for beyond 90 days. Here, we further evaluated this macroencapsulation strategy, defining effects of islet source (allogeneic and xenogeneic) and dose (500 and 800 islets), injection microenvironment (subcutaneous and intraperitoneal), and macrocapsule format (injectable and preformed implantable) on islet functional longevity and recipient immune response. We found that xenogeneic rat islets functioned similarly to or better than allogeneic mouse islets, with only modest improvements in longevity noted with dosage. Additionally, subcutaneous injection led to more consistent encapsulation outcomes along with improved islet health and longevity, compared with intraperitoneal administration, whereas no significant differences were observed between subcutaneous injectable and preformed implantable formats. Collectively, these results document the benefits of incorporating natural collagen for islet/β-cell replacement therapies.
替代具有长期葡萄糖感应和胰岛素释放功能的胰岛/β 细胞有可能恢复 1 型糖尿病患者的扩展血糖控制。不幸的是,持续存在的挑战使这些治疗方法无法广泛应用于临床,包括通过门静脉输注进行繁琐的管理、在给药时大量功能性胰岛组织丧失、有限的功能寿命以及对全身免疫抑制的需求。以前,纤维形成的 I 型胶原(低聚物)已被证明支持将同种异体胰岛通过皮下注射和原位包封在糖尿病小鼠体内,在 24 小时内迅速逆转高血糖并维持 90 天以上的正常血糖水平。在这里,我们进一步评估了这种宏观封装策略,定义了胰岛来源(同种异体和异种)和剂量(500 和 800 个胰岛)、注射微环境(皮下和腹腔内)以及大胶囊形式(可注射和预制可植入)对胰岛功能寿命和受体免疫反应的影响。我们发现,异种大鼠胰岛的功能与同种异体小鼠胰岛相似或更好,仅在剂量上注意到寿命略有延长。此外,与腹腔内给药相比,皮下注射导致更一致的封装结果,同时改善了胰岛的健康和寿命,而皮下可注射和预制可植入形式之间没有观察到显著差异。总之,这些结果证明了将天然胶原纳入胰岛/β 细胞替代疗法的好处。