Yu Chung-Jui, von Kugelgen Stephen, Laorenza Daniel W, Freedman Danna E
Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States.
ACS Cent Sci. 2021 May 26;7(5):712-723. doi: 10.1021/acscentsci.0c00737. Epub 2021 Apr 20.
The second quantum revolution hinges on the creation of materials that unite atomic structural precision with electronic and structural tunability. A molecular approach to quantum information science (QIS) promises to enable the bottom-up creation of quantum systems. Within the broad reach of QIS, which spans fields ranging from quantum computation to quantum communication, we will focus on quantum sensing. Quantum sensing harnesses quantum control to interrogate the world around us. A broadly applicable class of quantum sensors would feature adaptable environmental compatibility, control over distance from the target analyte, and a tunable energy range of interaction. Molecules enable customizable "designer" quantum sensors with tunable functionality and compatibility across a range of environments. These capabilities offer the potential to bring unmatched sensitivity and spatial resolution to address a wide range of sensing tasks from the characterization of dynamic biological processes to the detection of emergent phenomena in condensed matter. In this Outlook, we outline the concepts and design criteria central to quantum sensors and look toward the next generation of designer quantum sensors based on new classes of molecular sensors.
第二次量子革命取决于能否创造出将原子结构精度与电子和结构可调性相结合的材料。量子信息科学(QIS)的分子方法有望实现量子系统的自下而上构建。在涵盖从量子计算到量子通信等广泛领域的QIS范围内,我们将专注于量子传感。量子传感利用量子控制来探测我们周围的世界。一类广泛适用的量子传感器应具备适应性强的环境兼容性、对与目标分析物距离的控制以及可调的相互作用能量范围。分子能够实现具有可调功能且能在多种环境中兼容的定制化“设计型”量子传感器。这些能力有可能带来无与伦比的灵敏度和空间分辨率,以解决从动态生物过程表征到凝聚态物质中涌现现象检测等广泛的传感任务。在本展望中,我们概述了量子传感器的核心概念和设计标准,并展望基于新型分子传感器的下一代设计型量子传感器。