Suppr超能文献

The maximum likelihood approach to the identification of neuronal firing systems.

作者信息

Brillinger D R

机构信息

Statistics Department, University of California, Berkeley 94720.

出版信息

Ann Biomed Eng. 1988;16(1):3-16. doi: 10.1007/BF02367377.

Abstract

The concern of this work is the identification of the (nonlinear) system of a neuron firing under the influence of a continuous input in one case, and firing under the influence of two other neurons in a second case. In the first case, suppose that the data consist of sample values Xt, Yt, t = 0, +/- 1, +/- 2,... with Yt = 1 if the neuron fires in the time interval t to t + 1 and Yt = 0 otherwise, and with Xt denoting the (sampled) noise value at time t. Suppose that Ht denotes the history of the process to time t. Then, in this case the model fit has the form Prob[Yt = 1/Ht] = phi(Ut-theta) where (formula; see text) where gamma t denotes the time elapsed since the neuron last fired and phi denotes the normal cumulative. This model corresponds to quadratic summation of the stimulus followed by a random threshold device. In the second case, a network of three neurons is studied and it is supposed that (formula; see text) with Xt and Zt zero-one series corresponding to the firing times of the two other neurons. The models are fit by the method of maximum likelihood to Aplysia californica data collected in the laboratory of Professor J.P. Segundo. The paper also contains some general comments of the advantages of the maximum likelihood method for the identification of nonlinear systems.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验