Suppr超能文献

一种新颖的混合小波-局部加权线性回归 (W-LWLR) 模型,用于预测地表水的电导率 (EC)。

A novel Hybrid Wavelet-Locally Weighted Linear Regression (W-LWLR) Model for Electrical Conductivity (EC) Prediction in Surface Water.

机构信息

Department of Civil Engineering, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran.

Department of Engineering, Shohadaye Hoveizeh University of Technology, Dasht-e Azadegan, Susangerd, Iran.

出版信息

J Contam Hydrol. 2020 Jun;232:103641. doi: 10.1016/j.jconhyd.2020.103641. Epub 2020 Apr 19.

Abstract

Rivers are the most common and vital sources of water, which play a fundamental role in ecological systems and human life. Water quality assessment is a major element of managing water resources and accurate prediction of water quality is very essential for better management of rivers. The electrical conductivity (EC) is known as one of the most important water quality parameters to predict salinity and mineralization of water. The present study introduces a novel hybrid wavelet-locally weighted linear regression (W-LWLR) method to predict the monthly EC of the Sefidrud River in Iran. 240 monthly discharge (Q) and EC samples, over a period of 20 years, were collected. The data were divided into two frequency components at two decomposition levels using the mother wavelet Bior 6.8. To compare the performance of various methods, the standalone LWLR, support vector regression (SVR), wavelet support vector regression (W-SVR), autoregressive integrated moving average (ARIMA), wavelet ARIMA (W-ARIMA), multivariate linear regression (MLR), and wavelet MLR (W-MLR) were also used. The discrete wavelet transform (DWT) was coupled with the LWLR, SVR, and ARIMA to create the W-LWLR, W-SVR, W-ARIMA methods to predict the EC parameter. The comparisons demonstrated that the W-LWLR was more accurate and efficient than the LWLR, SVR, W-SVR, ARIMA, and W-ARIMA methods. The correlation coefficient (R) values were 0.973, 0.95, 0.565, 0.473, 0.425, 0.917 for the W-LWLR, W-SVR, LWLR, SVR, ARIMA, and W-ARIMA methods, respectively. Further, the root mean square error (RMSE) of W-LWLR was 89.78, while the corresponding values for W-SVR, LWLR, SVR, ARIMA, W-ARIMA, MLR, and W-MLR were 123.50, 319.95, 341.20, 350.153, 155.292, 351.774, and 157.856 respectively. The overall comparison metrics and error analysis demonstrated the superiority of the new proposed W-LWLR method for water quality prediction.

摘要

河流是最常见和最重要的水源,它们在生态系统和人类生活中起着基础性的作用。水质评估是水资源管理的重要组成部分,准确预测水质对于河流的更好管理至关重要。电导率 (EC) 是最重要的水质参数之一,可用于预测水的盐度和矿化度。本研究提出了一种新的混合小波-局部加权线性回归 (W-LWLR) 方法,用于预测伊朗塞菲德鲁德河的月 EC。收集了 20 年来 240 个月度流量 (Q) 和 EC 样本。使用母小波 Bior 6.8 将数据分为两个频率分量和两个分解级别。为了比较各种方法的性能,还使用了独立的 LWLR、支持向量回归 (SVR)、小波支持向量回归 (W-SVR)、自回归综合移动平均 (ARIMA)、小波 ARIMA (W-ARIMA)、多元线性回归 (MLR) 和小波 MLR (W-MLR)。离散小波变换 (DWT) 与 LWLR、SVR 和 ARIMA 耦合,形成 W-LWLR、W-SVR、W-ARIMA 方法,用于预测 EC 参数。比较结果表明,W-LWLR 比 LWLR、SVR、W-SVR、ARIMA 和 W-ARIMA 方法更准确、更高效。W-LWLR、W-SVR、LWLR、SVR、ARIMA 和 W-ARIMA 方法的相关系数 (R) 值分别为 0.973、0.95、0.565、0.473、0.425、0.917。此外,W-LWLR 的均方根误差 (RMSE) 为 89.78,而 W-SVR、LWLR、SVR、ARIMA、W-ARIMA、MLR 和 W-MLR 的相应值分别为 123.50、319.95、341.20、350.153、155.292、351.774 和 157.856。总体比较指标和误差分析表明,新提出的 W-LWLR 方法在水质预测方面具有优越性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验