文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

揭示 microRNAs/lncRNAs 在鉴定乳腺癌亚型和预后中的作用。

Uncovering the roles of microRNAs/lncRNAs in characterising breast cancer subtypes and prognosis.

机构信息

UniSA STEM, University of South Australia, Adelaide, Australia.

School of Life Sciences, University of Science and Technology, Hefei, China.

出版信息

BMC Bioinformatics. 2021 Jun 4;22(1):300. doi: 10.1186/s12859-021-04215-3.


DOI:10.1186/s12859-021-04215-3
PMID:34082714
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8176586/
Abstract

BACKGROUND: Accurate prognosis and identification of cancer subtypes at molecular level are important steps towards effective and personalised treatments of breast cancer. To this end, many computational methods have been developed to use gene (mRNA) expression data for breast cancer subtyping and prognosis. Meanwhile, microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) have been extensively studied in the last 2 decades and their associations with breast cancer subtypes and prognosis have been evidenced. However, it is not clear whether using miRNA and/or lncRNA expression data helps improve the performance of gene expression based subtyping and prognosis methods, and this raises challenges as to how and when to use these data and methods in practice. RESULTS: In this paper, we conduct a comparative study of 35 methods, including 12 breast cancer subtyping methods and 23 breast cancer prognosis methods, on a collection of 19 independent breast cancer datasets. We aim to uncover the roles of miRNAs and lncRNAs in breast cancer subtyping and prognosis from the systematic comparison. In addition, we created an R package, CancerSubtypesPrognosis, including all the 35 methods to facilitate the reproducibility of the methods and streamline the evaluation. CONCLUSIONS: The experimental results show that integrating miRNA expression data helps improve the performance of the mRNA-based cancer subtyping methods. However, miRNA signatures are not as good as mRNA signatures for breast cancer prognosis. In general, lncRNA expression data does not help improve the mRNA-based methods in both cancer subtyping and cancer prognosis. These results suggest that the prognostic roles of miRNA/lncRNA signatures in the improvement of breast cancer prognosis needs to be further verified.

摘要

背景:准确的预后和分子水平上的癌症亚型识别是实现乳腺癌有效和个体化治疗的重要步骤。为此,已经开发了许多计算方法来使用基因(mRNA)表达数据进行乳腺癌亚型分类和预后。同时,microRNAs(miRNAs)和长非编码RNAs(lncRNAs)在过去的 20 年中得到了广泛的研究,它们与乳腺癌亚型和预后的关系已经得到了证实。然而,目前尚不清楚是否使用 miRNA 和/或 lncRNA 表达数据有助于提高基于基因表达的亚型分类和预后方法的性能,这就提出了在实践中如何以及何时使用这些数据和方法的挑战。

结果:在本文中,我们对 35 种方法进行了比较研究,其中包括 12 种乳腺癌亚型分类方法和 23 种乳腺癌预后方法,涉及 19 个独立的乳腺癌数据集。我们旨在从系统比较中揭示 miRNA 和 lncRNA 在乳腺癌亚型分类和预后中的作用。此外,我们创建了一个 R 包 CancerSubtypesPrognosis,其中包含所有 35 种方法,以促进方法的可重复性并简化评估。

结论:实验结果表明,整合 miRNA 表达数据有助于提高基于 mRNA 的癌症亚型分类方法的性能。然而,miRNA 特征在乳腺癌预后方面不如 mRNA 特征好。一般来说,lncRNA 表达数据在癌症亚型分类和癌症预后方面都不能帮助改善基于 mRNA 的方法。这些结果表明,miRNA/lncRNA 特征在改善乳腺癌预后方面的预后作用需要进一步验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44b3/8176586/bcbb1f7f6361/12859_2021_4215_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44b3/8176586/d02b7877195a/12859_2021_4215_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44b3/8176586/25d8b486c0e0/12859_2021_4215_Fig2a_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44b3/8176586/724ffa3ce358/12859_2021_4215_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44b3/8176586/bcbb1f7f6361/12859_2021_4215_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44b3/8176586/d02b7877195a/12859_2021_4215_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44b3/8176586/25d8b486c0e0/12859_2021_4215_Fig2a_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44b3/8176586/724ffa3ce358/12859_2021_4215_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44b3/8176586/bcbb1f7f6361/12859_2021_4215_Fig4_HTML.jpg

相似文献

[1]
Uncovering the roles of microRNAs/lncRNAs in characterising breast cancer subtypes and prognosis.

BMC Bioinformatics. 2021-6-4

[2]
Analysis of the miRNA-mRNA-lncRNA network in human estrogen receptor-positive and estrogen receptor-negative breast cancer based on TCGA data.

Gene. 2018-3-5

[3]
Systematic analysis of lncRNA-miRNA-mRNA competing endogenous RNA network identifies four-lncRNA signature as a prognostic biomarker for breast cancer.

J Transl Med. 2018-9-27

[4]
Systematical analysis of lncRNA-mRNA competing endogenous RNA network in breast cancer subtypes.

Breast Cancer Res Treat. 2018-2-1

[5]
Analysis of the miRNA-mRNA-lncRNA networks in ER+ and ER- breast cancer cell lines.

J Cell Mol Med. 2015-12

[6]
LncmiRSRN: identification and analysis of long non-coding RNA related miRNA sponge regulatory network in human cancer.

Bioinformatics. 2018-12-15

[7]
Comprehensive analysis of the aberrantly expressed lncRNA‑associated ceRNA network in breast cancer.

Mol Med Rep. 2019-4-15

[8]
Integrated analysis of lncRNA-miRNA-mRNA ceRNA network in squamous cell carcinoma of tongue.

BMC Cancer. 2019-8-7

[9]
Construction and analysis of mRNA, miRNA, lncRNA, and TF regulatory networks reveal the key genes associated with prostate cancer.

PLoS One. 2018-8-23

[10]
Identifying Cancer Subtypes from miRNA-TF-mRNA Regulatory Networks and Expression Data.

PLoS One. 2016-4-1

引用本文的文献

[1]
Interplay between LncRNAs and microRNAs in Breast Cancer.

Int J Mol Sci. 2023-4-30

[2]
Topology-enhanced molecular graph representation for anti-breast cancer drug selection.

BMC Bioinformatics. 2022-9-19

[3]
An Eleven-microRNA Signature Related to Tumor-Associated Macrophages Predicts Prognosis of Breast Cancer.

Int J Mol Sci. 2022-6-23

本文引用的文献

[1]
Benchmarking joint multi-omics dimensionality reduction approaches for the study of cancer.

Nat Commun. 2021-1-5

[2]
The roles of long noncoding RNAs in breast cancer metastasis.

Cell Death Dis. 2020-9-14

[3]
Prognostic and Clinicopathological Significance of MiR-155 in Breast Cancer: A Systematic Review.

Int J Mol Sci. 2020-8-14

[4]
Expressions of miR-21 and miR-210 in Breast Cancer and Their Predictive Values for Prognosis.

Iran J Public Health. 2020-1

[5]
Comprehensive analysis of the lncRNA‑associated competing endogenous RNA network in breast cancer.

Oncol Rep. 2019-10-15

[6]
NEMO: cancer subtyping by integration of partial multi-omic data.

Bioinformatics. 2019-9-15

[7]
DSCAM-AS1 regulates the G /S cell cycle transition and is an independent prognostic factor of poor survival in luminal breast cancer patients treated with endocrine therapy.

Cancer Med. 2018-11-14

[8]
Multi-omic tumor data reveal diversity of molecular mechanisms that correlate with survival.

Nat Commun. 2018-10-26

[9]
Multi-omic and multi-view clustering algorithms: review and cancer benchmark.

Nucleic Acids Res. 2018-11-16

[10]
Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.

CA Cancer J Clin. 2018-9-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索