UniSA STEM, University of South Australia, Adelaide, Australia.
School of Life Sciences, University of Science and Technology, Hefei, China.
BMC Bioinformatics. 2021 Jun 4;22(1):300. doi: 10.1186/s12859-021-04215-3.
BACKGROUND: Accurate prognosis and identification of cancer subtypes at molecular level are important steps towards effective and personalised treatments of breast cancer. To this end, many computational methods have been developed to use gene (mRNA) expression data for breast cancer subtyping and prognosis. Meanwhile, microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) have been extensively studied in the last 2 decades and their associations with breast cancer subtypes and prognosis have been evidenced. However, it is not clear whether using miRNA and/or lncRNA expression data helps improve the performance of gene expression based subtyping and prognosis methods, and this raises challenges as to how and when to use these data and methods in practice. RESULTS: In this paper, we conduct a comparative study of 35 methods, including 12 breast cancer subtyping methods and 23 breast cancer prognosis methods, on a collection of 19 independent breast cancer datasets. We aim to uncover the roles of miRNAs and lncRNAs in breast cancer subtyping and prognosis from the systematic comparison. In addition, we created an R package, CancerSubtypesPrognosis, including all the 35 methods to facilitate the reproducibility of the methods and streamline the evaluation. CONCLUSIONS: The experimental results show that integrating miRNA expression data helps improve the performance of the mRNA-based cancer subtyping methods. However, miRNA signatures are not as good as mRNA signatures for breast cancer prognosis. In general, lncRNA expression data does not help improve the mRNA-based methods in both cancer subtyping and cancer prognosis. These results suggest that the prognostic roles of miRNA/lncRNA signatures in the improvement of breast cancer prognosis needs to be further verified.
背景:准确的预后和分子水平上的癌症亚型识别是实现乳腺癌有效和个体化治疗的重要步骤。为此,已经开发了许多计算方法来使用基因(mRNA)表达数据进行乳腺癌亚型分类和预后。同时,microRNAs(miRNAs)和长非编码RNAs(lncRNAs)在过去的 20 年中得到了广泛的研究,它们与乳腺癌亚型和预后的关系已经得到了证实。然而,目前尚不清楚是否使用 miRNA 和/或 lncRNA 表达数据有助于提高基于基因表达的亚型分类和预后方法的性能,这就提出了在实践中如何以及何时使用这些数据和方法的挑战。
结果:在本文中,我们对 35 种方法进行了比较研究,其中包括 12 种乳腺癌亚型分类方法和 23 种乳腺癌预后方法,涉及 19 个独立的乳腺癌数据集。我们旨在从系统比较中揭示 miRNA 和 lncRNA 在乳腺癌亚型分类和预后中的作用。此外,我们创建了一个 R 包 CancerSubtypesPrognosis,其中包含所有 35 种方法,以促进方法的可重复性并简化评估。
结论:实验结果表明,整合 miRNA 表达数据有助于提高基于 mRNA 的癌症亚型分类方法的性能。然而,miRNA 特征在乳腺癌预后方面不如 mRNA 特征好。一般来说,lncRNA 表达数据在癌症亚型分类和癌症预后方面都不能帮助改善基于 mRNA 的方法。这些结果表明,miRNA/lncRNA 特征在改善乳腺癌预后方面的预后作用需要进一步验证。
BMC Bioinformatics. 2021-6-4
Breast Cancer Res Treat. 2018-2-1
J Cell Mol Med. 2015-12
Int J Mol Sci. 2023-4-30
BMC Bioinformatics. 2022-9-19
Cell Death Dis. 2020-9-14
Iran J Public Health. 2020-1
Bioinformatics. 2019-9-15
Nucleic Acids Res. 2018-11-16