School of Computer Science (National Pilot Software Engineering School), Beijing University of Posts and Telecommunications, Beijing, China.
Key Laboratory of Trustworthy Distributed Computing and Service (BUPT), Ministry of Education, Beijing, China.
BMC Bioinformatics. 2022 Sep 19;23(1):382. doi: 10.1186/s12859-022-04913-6.
Breast cancer is currently one of the cancers with a higher mortality rate in the world. The biological research on anti-breast cancer drugs focuses on the activity of estrogen receptors alpha (ER[Formula: see text]), the pharmacokinetic properties and the safety of the compounds, which, however, is an expensive and time-consuming process. Developments of deep learning bring potential to efficiently facilitate the candidate drug selection against breast cancer.
In this paper, we propose an Anti-Breast Cancer Drug selection method utilizing Gated Graph Neural Networks (ABCD-GGNN) to topologically enhance the molecular representation of candidate drugs. By constructing atom-level graphs through atomic descriptors for each distinct compound, ABCD-GGNN can topologically learn both the implicit structure and substructure characteristics of a candidate drug and then integrate the representation with explicit discrete molecular descriptors to generate a molecule-level representation. As a result, the representation of ABCD-GGNN can inductively predict the ER[Formula: see text], the pharmacokinetic properties and the safety of each candidate drug. Finally, we design a ranking operator whose inputs are the predicted properties so as to statistically select the appropriate drugs against breast cancer.
Extensive experiments conducted on our collected anti-breast cancer candidate drug dataset demonstrate that our proposed method outperform all the other representative methods in the tasks of predicting ER[Formula: see text], and the pharmacokinetic properties and safety of the compounds. Extended result analysis demonstrates the efficiency and biological rationality of the operator we design to calculate the candidate drug ranking from the predicted properties.
In this paper, we propose the ABCD-GGNN representation method to efficiently integrate the topological structure and substructure features of the molecules with the discrete molecular descriptors. With a ranking operator applied, the predicted properties efficiently facilitate the candidate drug selection against breast cancer.
乳腺癌是目前全球死亡率较高的癌症之一。抗乳腺癌药物的生物研究主要集中在雌激素受体α(ER[Formula: see text])的活性、化合物的药代动力学性质和安全性上,但这是一个昂贵且耗时的过程。深度学习的发展为高效促进针对乳腺癌的候选药物选择带来了潜力。
在本文中,我们提出了一种利用门控图神经网络(ABCD-GGNN)对候选药物的分子表示进行拓扑增强的抗乳腺癌药物选择方法。通过为每个独特化合物的原子描述符构建原子级图,ABCD-GGNN 可以拓扑学习候选药物的隐含结构和子结构特征,并将表示与显式离散分子描述符集成以生成分子级表示。因此,ABCD-GGNN 的表示可以归纳性地预测每个候选药物的 ER[Formula: see text]、药代动力学性质和安全性。最后,我们设计了一个排名运算符,其输入是预测的性质,以便从候选药物中统计选择合适的药物。
在我们收集的抗乳腺癌候选药物数据集上进行的广泛实验表明,我们提出的方法在预测 ER[Formula: see text]、化合物的药代动力学性质和安全性的任务中优于所有其他代表性方法。扩展的结果分析证明了我们设计的运算符从预测的性质计算候选药物排名的效率和生物学合理性。
在本文中,我们提出了一种利用门控图神经网络(ABCD-GGNN)对候选药物的分子表示进行拓扑增强的方法,以高效地将分子的拓扑结构和子结构特征与离散分子描述符集成。通过应用排名运算符,预测的性质可有效地促进针对乳腺癌的候选药物选择。