Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany.
Center for Biotechnology, Bielefeld University, Bielefeld, Germany.
Microb Cell Fact. 2021 Jun 3;20(1):111. doi: 10.1186/s12934-021-01602-6.
Pamamycins are macrodiolides of polyketide origin which form a family of differently large homologues with molecular weights between 579 and 663. They offer promising biological activity against pathogenic fungi and gram-positive bacteria. Admittedly, production titers are very low, and pamamycins are typically formed as crude mixture of mainly smaller derivatives, leaving larger derivatives rather unexplored so far. Therefore, strategies that enable a more efficient production of pamamycins and provide increased fractions of the rare large derivatives are highly desired. Here we took a systems biology approach, integrating transcription profiling by RNA sequencing and intracellular metabolite analysis, to enhance pamamycin production in the heterologous host S. albus J1074/R2.
Supplemented with L-valine, the recombinant producer S. albus J1074/R2 achieved a threefold increased pamamycin titer of 3.5 mg L and elevated fractions of larger derivatives: Pam 649 was strongly increased, and Pam 663 was newly formed. These beneficial effects were driven by increased availability of intracellular CoA thioesters, the building blocks for the polyketide, resulting from L-valine catabolism. Unfavorably, L-valine impaired growth of the strain, repressed genes of mannitol uptake and glycolysis, and suppressed pamamycin formation, despite the biosynthetic gene cluster was transcriptionally activated, restricting production to the post L-valine phase. A deletion mutant of the transcriptional regulator bkdR, controlling a branched-chain amino acid dehydrogenase complex, revealed decoupled pamamycin biosynthesis. The regulator mutant accumulated the polyketide independent of the nutrient status. Supplemented with L-valine, the novel strain enabled the biosynthesis of pamamycin mixtures with up to 55% of the heavy derivatives Pam 635, Pam 649, and Pam 663: almost 20-fold more than the wild type.
Our findings open the door to provide rare heavy pamamycins at markedly increased efficiency and facilitate studies to assess their specific biological activities and explore this important polyketide further.
Pamamycins 是聚酮类来源的大环内酯,形成了分子量在 579 至 663 之间的不同大小同系物家族。它们对致病性真菌和革兰氏阳性菌具有有希望的生物活性。诚然,产量非常低,而且 pamamycins 通常形成主要较小衍生物的粗混合物,使得较大的衍生物至今仍未得到充分探索。因此,能够更有效地生产 pamamycins 并提供更多稀有大衍生物的策略是非常需要的。在这里,我们采用系统生物学方法,整合 RNA 测序的转录谱分析和细胞内代谢物分析,以提高异源宿主 S. albus J1074/R2 中 pamamycin 的产量。
补充 L-缬氨酸后,重组生产菌 S. albus J1074/R2 的 pamamycin 产量增加了三倍,达到 3.5mg/L,并且较大衍生物的比例也有所提高:Pam 649 明显增加,Pam 663 也新形成。这些有益效果是由于 L-缬氨酸分解代谢增加了细胞内 CoA 硫酯的可用性,CoA 硫酯是聚酮的组成部分。不利的是,L-缬氨酸会损害菌株的生长,抑制甘露醇摄取和糖酵解途径基因的表达,并抑制 pamamycin 的形成,尽管生物合成基因簇被转录激活,但限制了生产仅限于 L-缬氨酸后阶段。转录调控因子 bkdR 的缺失突变体,控制支链氨基酸脱氢酶复合物,揭示了 pamamycin 生物合成的解耦。该调节因子突变体在不依赖营养状态的情况下积累聚酮。补充 L-缬氨酸后,新型菌株能够以高达 55%的重衍生物 Pam 635、Pam 649 和 Pam 663 的比例合成 pamamycin 混合物:比野生型增加了近 20 倍。
我们的研究结果为以显著提高的效率提供罕见的重 pamamycins 开辟了道路,并有助于研究评估它们的特定生物活性并进一步探索这种重要的多酮。