Suppr超能文献

工程化 TetR 家族转录调控因子 BkdR 可增强 B4 底盘中异源多杀菌素的生产。

Engineering of a TetR family transcriptional regulator BkdR enhances heterologous spinosad production in B4 chassis.

机构信息

Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, China.

State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.

出版信息

Appl Environ Microbiol. 2024 Jul 24;90(7):e0083824. doi: 10.1128/aem.00838-24. Epub 2024 Jun 21.

Abstract

UNLABELLED

Precursor supply plays a significant role in the production of secondary metabolites. In bacteria, propionyl-, malonyl-, and methylmalonyl-CoA are the most common precursors used for polyketide biosynthesis. Although propionyl-CoA synthetases participate in the propionate assimilation pathway and directly convert propionate into propionyl-CoA, malonyl- and methylmalonyl-CoA cannot be formed using common acyl-CoA synthetases. Therefore, both acetyl- and propionyl-CoA carboxylation, catalyzed by acyl-CoA carboxylases, should be considered when engineering a microorganism chassis to increase polyketide production. In this study, we identified a transcriptional regulator of the TetR family, BkdR, in B4, which binds directly to the promoter region of the neighboring operon. This operon encodes acetyl/propionyl-CoA carboxylase and negatively regulates its transcription. In addition to acetate and propionate, the binding of BkdR to is disrupted by acetyl- and propionyl-CoA ligands. We identified a 16-nucleotide palindromic BkdR-binding motif (GTTAg/CGGTCg/TTAAC) in the intergenic region between and . When was deleted, we found an enhanced supply of malonyl- and methylmalonyl-CoA precursors in B4. In this study, spinosad production was detected in the recombinant strain after introducing the entire artificial biosynthesized gene cluster into B4. When supplemented with propionate to provide propionyl-CoA, the novel -deleted strain produced 29.4% more spinosad than the initial strain in trypticase soy broth (TSB) medium.

IMPORTANCE

In this study, we describe a operon involved in short-chain acyl-CoA carboxylation in B4 chassis. The TetR family regulator, BkdR, represses this operon. Our results show that BkdR regulates the precursor supply needed for heterologous spinosad biosynthesis by controlling acetyl- and propionyl-CoA assimilation. The deletion of the BkdR-encoding gene exerts an increase in heterologous spinosad yield. Our research reveals a regulatory mechanism in short-chain acyl-CoA metabolism and suggests new possibilities for chassis engineering to enhance heterologous polyketide yield.

摘要

未加标签

前体供应在次生代谢物的生产中起着重要作用。在细菌中,丙酰基、丙二酰基和甲基丙二酰基 -CoA 是用于聚酮生物合成的最常见前体。虽然丙酰基 -CoA 合成酶参与丙酸同化途径,并将丙酸直接转化为丙酰基 -CoA,但常见的酰基辅酶 A 合成酶不能形成丙二酰基和甲基丙二酰基 -CoA。因此,在工程微生物底盘以增加聚酮产量时,应考虑乙酰基和丙酰基 -CoA 的羧化作用,由酰基辅酶 A 羧化酶催化。在这项研究中,我们在 B4 中鉴定了 TetR 家族的转录调节剂 BkdR,它直接结合在相邻 operon 的启动子区域。该 operon 编码乙酰基/丙酰基 -CoA 羧化酶,并负调控其转录。除了乙酸盐和丙酸盐外,BkdR 与的结合还被乙酰基和丙酰基 -CoA 配体破坏。我们在 operon 之间的基因间区域鉴定出一个 16 个核苷酸的回文 BkdR 结合基序(GTTAg/CGGTCg/TTAAC)。当 operon 缺失时,我们发现 B4 中的丙二酰基和甲基丙二酰基 -CoA 前体供应增加。在这项研究中,在将整个人工生物合成基因簇引入 B4 后,在重组菌株中检测到了螺旋霉素的产生。当用丙酸盐补充提供丙酰基 -CoA 时,与初始菌株相比,新型 operon 缺失菌株在胰蛋白酶大豆肉汤(TSB)培养基中产生的螺旋霉素增加了 29.4%。

意义

在这项研究中,我们描述了 B4 底盘中涉及短链酰基辅酶 A 羧化的 operon。TetR 家族调节剂 BkdR 抑制该 operon。我们的结果表明,BkdR 通过控制乙酰基和丙酰基 -CoA 的同化来调节异源螺旋霉素生物合成所需的前体供应。BkdR 编码基因的缺失导致异源螺旋霉素产量增加。我们的研究揭示了短链酰基辅酶 A 代谢的调控机制,并为增强异源聚酮产量的底盘工程提供了新的可能性。

相似文献

引用本文的文献

1
A new paradigm for the regulation of A40926B0 biosynthesis.A40926B0生物合成调控的新范式。
Synth Syst Biotechnol. 2025 Apr 7;10(3):794-806. doi: 10.1016/j.synbio.2025.03.012. eCollection 2025 Sep.

本文引用的文献

7
MEGA11: Molecular Evolutionary Genetics Analysis Version 11.MEGA11:分子进化遗传学分析版本 11。
Mol Biol Evol. 2021 Jun 25;38(7):3022-3027. doi: 10.1093/molbev/msab120.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验