Suppr超能文献

一种将时间序列转换为加权复杂网络的静电学方法。

An electrostatics method for converting a time-series into a weighted complex network.

作者信息

Tsiotas Dimitrios, Magafas Lykourgos, Argyrakis Panos

机构信息

Department of Regional and Economic Development, Agricultural University of Athens, Amfissa, Greece.

Adjunct Academic Staff, School of Social Sciences, Hellenic Open University, 10677, Athens, Greece.

出版信息

Sci Rep. 2021 Jun 3;11(1):11785. doi: 10.1038/s41598-021-89552-2.

Abstract

This paper proposes a new method for converting a time-series into a weighted graph (complex network), which builds on electrostatics in physics. The proposed method conceptualizes a time-series as a series of stationary, electrically charged particles, on which Coulomb-like forces can be computed. This allows generating electrostatic-like graphs associated with time-series that, additionally to the existing transformations, can be also weighted and sometimes disconnected. Within this context, this paper examines the structural similarity between five different types of time-series and their associated graphs that are generated by the proposed algorithm and the visibility graph, which is currently the most popular algorithm in the literature. The analysis compares the source (original) time-series with the node-series generated by network measures (that are arranged into the node-ordering of the source time-series), in terms of a linear trend, chaotic behaviour, stationarity, periodicity, and cyclical structure. It is shown that the proposed electrostatic graph algorithm generates graphs with node-measures that are more representative of the structure of the source time-series than the visibility graph. This makes the proposed algorithm more natural rather than algebraic, in comparison with existing physics-defined methods. The overall approach also suggests a methodological framework for evaluating the structural relevance between the source time-series and their associated graphs produced by any possible transformation.

摘要

本文提出了一种将时间序列转换为加权图(复杂网络)的新方法,该方法基于物理学中的静电学原理。所提出的方法将时间序列概念化为一系列静止的带电粒子,在这些粒子上可以计算类似库仑力的力。这使得能够生成与时间序列相关的类似静电的图,除了现有的变换之外,这些图还可以是加权的,有时甚至是不连通的。在此背景下,本文研究了五种不同类型的时间序列与其由所提出的算法和可见性图生成的相关图之间的结构相似性,可见性图是目前文献中最流行的算法。该分析从线性趋势、混沌行为、平稳性、周期性和循环结构等方面,将源(原始)时间序列与通过网络度量生成的节点序列(这些节点序列按照源时间序列的节点顺序排列)进行比较。结果表明,与可见性图相比,所提出的静电图算法生成的图的节点度量更能代表源时间序列的结构。与现有的物理定义方法相比,这使得所提出的算法更自然而非代数化。总体方法还提出了一个方法框架,用于评估源时间序列与其由任何可能变换产生的相关图之间的结构相关性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d80/8175385/5a17904c38ba/41598_2021_89552_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验