Suppr超能文献

高通量 miRFlur 平台鉴定出调控 B3GLCT 的 miRNA,可预测 Peters'Plus 综合征表型,支持 miRNA 替代假说。

High-Throughput miRFluR Platform Identifies miRNA Regulating B3GLCT That Predict Peters' Plus Syndrome Phenotype, Supporting the miRNA Proxy Hypothesis.

机构信息

Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2.

Biomedical Chemistry Institute, Department of Chemistry, New York University, New York, New York 10003, United States.

出版信息

ACS Chem Biol. 2021 Oct 15;16(10):1900-1907. doi: 10.1021/acschembio.1c00247. Epub 2021 Jun 4.

Abstract

MicroRNAs (miRNAs, miRs) finely tune protein expression and target networks of hundreds to thousands of genes that control specific biological processes. They are critical regulators of glycosylation, one of the most diverse and abundant post-translational modifications. In recent work, miRs have been shown to predict the biological functions of glycosylation enzymes, leading to the "miRNA proxy hypothesis" which states, "if a miR drives a specific biological phenotype..., the targets of that miR will drive the same biological phenotype." Testing of this powerful hypothesis is hampered by our lack of knowledge about miR targets. Target prediction suffers from low accuracy and a high false prediction rate. Herein, we develop a high-throughput experimental platform to analyze miR-target interactions, miRFluR. We utilize this system to analyze the interactions of the entire human miRome with beta-3-glucosyltransferase (B3GLCT), a glycosylation enzyme whose loss underpins the congenital disorder Peters' Plus Syndrome. Although this enzyme is predicted by multiple algorithms to be highly targeted by miRs, we identify only 27 miRs that downregulate B3GLCT, a >96% false positive rate for prediction. Functional enrichment analysis of these validated miRs predicts phenotypes associated with Peters' Plus Syndrome, although B3GLCT is not in their known target network. Thus, biological phenotypes driven by B3GLCT may be driven by the target networks of miRs that regulate this enzyme, providing additional evidence for the miRNA proxy hypothesis.

摘要

微小 RNA(miRNAs,miRs)精细地调节蛋白质表达和数以百计到数千个基因的靶标网络,这些基因控制着特定的生物学过程。它们是糖基化的关键调节剂,糖基化是最具多样性和丰富性的翻译后修饰之一。在最近的研究中,miRs 已被证明可以预测糖基化酶的生物学功能,从而提出了“miRNA 代理假说”,即“如果 miR 驱动特定的生物学表型……,那么 miR 的靶标将驱动相同的生物学表型。” 由于我们对 miR 靶标的知识不足,这个强大假说的验证受到了阻碍。靶标预测的准确性较低,假阳性率较高。在此,我们开发了一种高通量实验平台来分析 miR-靶标相互作用,即 miRFluR。我们利用该系统分析了整个人类 miRome 与β-3-葡萄糖基转移酶(B3GLCT)的相互作用,B3GLCT 是一种糖基化酶,其缺失是先天性疾病 Peters' Plus 综合征的基础。尽管该酶被多种算法预测为高度受 miR 靶向,但我们仅鉴定出 27 个下调 B3GLCT 的 miR,预测的假阳性率超过 96%。这些经验证的 miR 的功能富集分析预测了与 Peters' Plus 综合征相关的表型,尽管 B3GLCT 不在其已知的靶标网络中。因此,由 B3GLCT 驱动的生物学表型可能由调节该酶的 miR 的靶标网络驱动,为 miRNA 代理假说提供了额外的证据。

相似文献

6
Ocular Phenotype of Peters-Plus Syndrome.皮特-普莱斯综合征的眼部表型。
Cornea. 2022 Feb 1;41(2):219-223. doi: 10.1097/ICO.0000000000002889.

本文引用的文献

7
Sweet Control: MicroRNA Regulation of the Glycome.甜蜜调控:糖组的 microRNA 调控
Biochemistry. 2020 Sep 1;59(34):3098-3110. doi: 10.1021/acs.biochem.9b00784. Epub 2019 Oct 21.
8
10
Biological roles of glycans.聚糖的生物学作用。
Glycobiology. 2017 Jan;27(1):3-49. doi: 10.1093/glycob/cww086. Epub 2016 Aug 24.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验