Shih Han, Greene Tanja, Korc Murray, Lin Chien-Chi
Weldon School of Biomedical Engineering, Purdue University , West Lafayette, Indiana 47907, United States.
Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis , Indianapolis, Indiana 46202, United States.
Biomacromolecules. 2016 Dec 12;17(12):3872-3882. doi: 10.1021/acs.biomac.6b00931. Epub 2016 Nov 11.
Photopolymerized biomimetic hydrogels with adaptable properties have been widely used for cell and tissue engineering applications. As a widely adopted gel cross-linking method, photopolymerization provides experimenters on-demand and spatial-temporal controls in gelation kinetics. Long wavelength ultraviolet (UV) light initiated photopolymerization is among the most popular methods in the fabrication of cell-laden hydrogels owing to its rapid and relatively mild gelation conditions. The use of UV light, however, still causes concerns regarding its potential negative impacts on cells. Alternatively, visible light based photopolymerization can be used to cross-link cell-laden hydrogels. The majority of visible light based gelation schemes involve photoinitiator, co-initiator, and comonomer. This multicomponent initiation system creates added challenges for optimizing hydrogel formulations. Here, we report a co-initiator/comonomer-free visible light initiated thiol-norbornene photopolymerization scheme to prepare modular biomimetic hydrogels suitable for in situ cell encapsulation. Eosin-Y was used as the sole initiator to initiate modular gelation between synthetic macromers (e.g., thiolated poly(vinyl alcohol) or poly(ethylene glycol)) and functionalized extracellular matrices (ECMs) including norbornene-functionalized gelatin (GelNB) or thiolated hyaluronic acid (THA). These components are modularly cross-linked to afford bioinert (i.e., purely synthetic), bioactive (i.e., using gelatin), and biomimetic (i.e., using gelatin and hyaluronic acid) hydrogels. The stiffness of the hydrogels can be easily tuned without affecting the contents of the bioactive components. Furthermore, the use of naturally derived biomacromolecules (e.g., gelatin and HA) renders these hydrogels susceptible to enzyme-mediated degradation. In addition to demonstrating efficient and tunable visible light mediated gelation, we also utilized this biomimetic modular gelation system to formulate artificial tumor niche and to study the effects of cell density and gel modulus on the formation of pancreatic ductal adenocarcinoma (PDAC) spheroids.
具有适应性特性的光聚合仿生水凝胶已被广泛应用于细胞和组织工程领域。作为一种广泛采用的凝胶交联方法,光聚合为实验者提供了对凝胶化动力学的按需和时空控制。长波长紫外光引发的光聚合是制备载细胞水凝胶最常用的方法之一,因为其凝胶化条件快速且相对温和。然而,使用紫外光仍会引发人们对其对细胞潜在负面影响的担忧。另外,基于可见光的光聚合可用于交联载细胞水凝胶。大多数基于可见光的凝胶化方案都涉及光引发剂、共引发剂和共聚单体。这种多组分引发体系给优化水凝胶配方带来了额外的挑战。在此,我们报道了一种无共引发剂/共聚单体的可见光引发的硫醇-降冰片烯光聚合方案,以制备适用于原位细胞封装的模块化仿生水凝胶。曙红-Y用作唯一引发剂,引发合成大分子单体(如硫醇化聚乙烯醇或聚乙二醇)与功能化细胞外基质(ECM)之间的模块化凝胶化,所述功能化细胞外基质包括降冰片烯功能化明胶(GelNB)或硫醇化透明质酸(THA)。这些组分通过模块化交联,得到生物惰性(即纯合成的)、生物活性(即使用明胶)和仿生(即使用明胶和透明质酸)水凝胶。水凝胶的硬度可以很容易地调节,而不影响生物活性成分的含量。此外,使用天然衍生的生物大分子(如明胶和HA)使这些水凝胶易于酶介导的降解。除了展示高效且可调的可见光介导的凝胶化外,我们还利用这种仿生模块化凝胶化系统构建人工肿瘤微环境,并研究细胞密度和凝胶模量对胰腺导管腺癌(PDAC)球体形成的影响。