University College London, Gower Street, London, WC1E 6BT, UK.
BMC Bioinformatics. 2021 Jun 4;22(1):301. doi: 10.1186/s12859-021-04201-9.
Network models are well-established as very useful computational-statistical tools in cell biology. However, a genomic network model based only on gene expression data can, by definition, only infer gene co-expression networks. Hence, in order to infer gene regulatory patterns, it is necessary to also include data related to binding of regulatory factors to DNA.
We propose a new dynamic genomic network model, for inferring patterns of genomic regulatory influence in dynamic processes such as development. Our model fuses experiment-specific gene expression data with publicly available DNA-binding data. The method we propose is computationally efficient, and can be applied to genome-wide data with tens of thousands of transcripts. Thus, our method is well suited for use as an exploratory tool for genome-wide data. We apply our method to data from human fetal cortical development, and our findings confirm genomic regulatory patterns which are recognised as being fundamental to neuronal development.
Our method provides a mathematical/computational toolbox which, when coupled with targeted experiments, will reveal and confirm important new functional genomic regulatory processes in mammalian development.
网络模型作为细胞生物学中非常有用的计算统计工具已得到广泛认可。然而,仅基于基因表达数据的基因组网络模型,根据定义,只能推断基因共表达网络。因此,为了推断基因调控模式,有必要同时包含与调控因子与 DNA 结合相关的数据。
我们提出了一种新的动态基因组网络模型,用于推断发育等动态过程中基因组调控影响的模式。我们的模型将特定于实验的基因表达数据与公开可用的 DNA 结合数据融合在一起。我们提出的方法计算效率高,可应用于具有数万条转录本的全基因组数据。因此,我们的方法非常适合用作全基因组数据的探索性工具。我们将我们的方法应用于人类胎儿皮质发育的数据,我们的发现证实了被认为是神经元发育基础的基因组调控模式。
我们的方法提供了一个数学/计算工具包,当与靶向实验相结合时,将揭示和证实哺乳动物发育中重要的新功能基因组调控过程。