Godoy-Lorite Antonia, Jones Nick S
EPSRC Centre for the Mathematics of Precision Healthcare, Department of Mathematics, Imperial College London, London SW7 2AZ, UK.
Centre for Advanced Spatial Analysis, University College London, 90 Tottenham Court Road, London W1T 4TJ, UK.
Sci Adv. 2021 Jun 4;7(23). doi: 10.1126/sciadv.abb8762. Print 2021 Jun.
Population behavior, like voting and vaccination, depends on the structure of social networks. This structure can differ depending on behavior type and is typically hidden. However, we do often have behavioral data, albeit only snapshots taken at one time point. We present a method jointly inferring a model for both network structure and human behavior using only snapshot population-level behavioral data. This exploits the simplicity of a few parameter model, geometric sociodemographic network model, and a spin-based model of behavior. We illustrate, for the European Union referendum and two London mayoral elections, how the model offers both prediction and the interpretation of the homophilic inclinations of the population. Beyond extracting behavior-specific network structure from behavioral datasets, our approach yields a framework linking inequalities and social preferences to behavioral outcomes. We illustrate potential network-sensitive policies: How changes to income inequality, social temperature, and homophilic preferences might have reduced polarization in a recent election.
群体行为,如投票和接种疫苗,取决于社会网络的结构。这种结构可能因行为类型而异,并且通常是隐藏的。然而,我们确实经常拥有行为数据,尽管只是在一个时间点拍摄的快照。我们提出了一种仅使用快照群体层面的行为数据来联合推断网络结构和人类行为模型的方法。这利用了少数参数模型、几何社会人口网络模型和基于自旋的行为模型的简单性。我们举例说明,对于欧盟公投和两次伦敦市长选举,该模型如何提供预测以及对群体同质性倾向的解释。除了从行为数据集中提取特定行为的网络结构之外,我们的方法还产生了一个将不平等和社会偏好与行为结果联系起来的框架。我们举例说明了潜在的对网络敏感的政策:收入不平等、社会热度和同质性偏好的变化可能如何减少最近一次选举中的两极分化。