文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

p63 四聚化结构域的结构与动力学稳定性。

Structure and kinetic stability of the p63 tetramerization domain.

机构信息

Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK.

出版信息

J Mol Biol. 2012 Jan 20;415(3):503-13. doi: 10.1016/j.jmb.2011.11.007. Epub 2011 Nov 12.


DOI:10.1016/j.jmb.2011.11.007
PMID:22100306
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC3277882/
Abstract

The p53 family of transcription factors--comprising p53, p63 and p73--plays an important role in tumor prevention and development. Essential to their function is the formation of tetramers, allowing cooperative binding to their DNA response elements. We solved crystal structures of the human p63 tetramerization domain, showing that p63 forms a dimer of dimers with D₂ symmetry composed of highly intertwined monomers. The primary dimers are formed via an intramolecular β-sheet and hydrophobic helix packing (H1), a hallmark of all p53 family members. Like p73, but unlike p53, p63 requires a second helix (H2) to stabilize the architecture of the tetramer. In order to investigate the impact of structural differences on tetramer stability, we measured the subunit exchange reaction of p53 family homotetramers by nanoflow electrospray mass spectrometry. There were differences in both the kinetics and the pattern of the exchange reaction, with the p53 and p63 tetramers exhibiting much faster exchange kinetics than p73. The structural similarity between p63 and p73 rationalizes previous observations that p63 and p73 form mixed tetramers, and the kinetic data reveal the dissociation of the p73 homotetramers as the rate-limiting step for heterotetramer formation. Differential stability of the tetramers may play an important role in the cross talk between different isoforms and regulation of p53, p63 and p73 function in the cell cycle.

摘要

p53 家族转录因子——包括 p53、p63 和 p73——在肿瘤的预防和发展中起着重要作用。它们的功能发挥的关键是四聚体的形成,允许协同结合它们的 DNA 反应元件。我们解析了人源 p63 四聚化结构域的晶体结构,结果显示 p63 以 D₂ 对称性形成由高度缠绕的单体组成的二聚体二聚体。主要的二聚体是通过分子内的 β-折叠和疏水螺旋包装(H1)形成的,这是所有 p53 家族成员的特征。与 p73 不同,但与 p53 相同,p63 需要第二个螺旋(H2)来稳定四聚体的结构。为了研究结构差异对四聚体稳定性的影响,我们通过纳米流电喷雾质谱法测量了 p53 家族同源四聚体的亚基交换反应。动力学和交换反应的模式都存在差异,p53 和 p63 四聚体的交换动力学比 p73 快得多。p63 和 p73 之间的结构相似性解释了先前观察到的 p63 和 p73 形成混合四聚体的现象,而动力学数据揭示了 p73 同源四聚体的解离是异源四聚体形成的限速步骤。四聚体的稳定性差异可能在不同亚型之间的相互作用以及对细胞周期中 p53、p63 和 p73 功能的调节中发挥重要作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/909c/3277882/fcd21157329c/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/909c/3277882/f7d291ee017e/fx1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/909c/3277882/b7019de148a1/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/909c/3277882/6d43e25f9a2c/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/909c/3277882/43dbe3f681c0/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/909c/3277882/b9cf0033d30a/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/909c/3277882/fcd21157329c/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/909c/3277882/f7d291ee017e/fx1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/909c/3277882/b7019de148a1/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/909c/3277882/6d43e25f9a2c/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/909c/3277882/43dbe3f681c0/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/909c/3277882/b9cf0033d30a/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/909c/3277882/fcd21157329c/gr5.jpg

相似文献

[1]
Structure and kinetic stability of the p63 tetramerization domain.

J Mol Biol. 2011-11-12

[2]
Structural evolution of p53, p63, and p73: implication for heterotetramer formation.

Proc Natl Acad Sci U S A. 2009-10-20

[3]
Conformational stability and activity of p73 require a second helix in the tetramerization domain.

Cell Death Differ. 2009-9-18

[4]
DARPins detect the formation of hetero-tetramers of p63 and p73 in epithelial tissues and in squamous cell carcinoma.

Cell Death Dis. 2023-10-12

[5]
Regulation of the Activity in the p53 Family Depends on the Organization of the Transactivation Domain.

Structure. 2018-6-28

[6]
Structural investigations of the p53/p73 homologs from the tunicate species Ciona intestinalis reveal the sequence requirements for the formation of a tetramerization domain.

Protein Sci. 2016-2

[7]
The dominant-negative interplay between p53, p63 and p73: A family affair.

Oncotarget. 2016-10-25

[8]
Intrinsic aggregation propensity of the p63 and p73 TI domains correlates with p53R175H interaction and suggests further significance of aggregation events in the p53 family.

Cell Death Differ. 2016-12

[9]
Molecular basis of S100 proteins interacting with the p53 homologs p63 and p73.

Oncogene. 2010-2-8

[10]
Crystal structures of the DNA-binding domain tetramer of the p53 tumor suppressor family member p73 bound to different full-site response elements.

J Biol Chem. 2012-12-14

引用本文的文献

[1]
Oocyte death is triggered by the stabilization of TAp63α dimers in response to cisplatin.

Cell Death Dis. 2024-11-7

[2]
Unlocking the Gateway: The Spatio-Temporal Dynamics of the p53 Family Driven by the Nuclear Pores and Its Implication for the Therapeutic Approach in Cancer.

Int J Mol Sci. 2024-7-7

[3]
Dichotomous transactivation domains contribute to growth inhibitory and promotion functions of TAp73.

Proc Natl Acad Sci U S A. 2024-5-21

[4]
Highly Similar Tetramerization Domains from the p53 Protein of Different Mammalian Species Possess Varying Biophysical, Functional and Structural Properties.

Int J Mol Sci. 2023-11-22

[5]
Biomolecular condensates in kidney physiology and disease.

Nat Rev Nephrol. 2023-12

[6]
Phylogenetic analysis of the MCL1 BH3 binding groove and rBH3 sequence motifs in the p53 and INK4 protein families.

PLoS One. 2023

[7]
Structural diversity of p63 and p73 isoforms.

Cell Death Differ. 2022-5

[8]
Evolutionary history of the p53 family DNA-binding domain: insights from an Alvinella pompejana homolog.

Cell Death Dis. 2022-3-7

[9]
A proteogenomic portrait of lung squamous cell carcinoma.

Cell. 2021-8-5

[10]
NF-κB Rel subunit exchange on a physiological timescale.

Protein Sci. 2021-9

本文引用的文献

[1]
p63 is a suppressor of tumorigenesis and metastasis interacting with mutant p53.

Cell Death Differ. 2011-7-15

[2]
Structural basis of p63α SAM domain mutants involved in AEC syndrome.

FEBS J. 2011-6-20

[3]
REFMAC5 for the refinement of macromolecular crystal structures.

Acta Crystallogr D Biol Crystallogr. 2011-4

[4]
Interaction of the p53 DNA-binding domain with its n-terminal extension modulates the stability of the p53 tetramer.

J Mol Biol. 2011-3-30

[5]
Gain of function of mutant p53 by coaggregation with multiple tumor suppressors.

Nat Chem Biol. 2011-3-27

[6]
The role of p63 in cancer, stem cells and cancer stem cells.

Cell Mol Biol Lett. 2011-3-20

[7]
The p53 family: guardians of maternal reproduction.

Nat Rev Mol Cell Biol. 2011-4

[8]
The C-terminus of p63 contains multiple regulatory elements with different functions.

Cell Death Dis. 2010

[9]
DNA damage in oocytes induces a switch of the quality control factor TAp63α from dimer to tetramer.

Cell. 2011-2-18

[10]
Single-Molecule characterization of oligomerization kinetics and equilibria of the tumor suppressor p53.

Nucleic Acids Res. 2010-11-18

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索