Suppr超能文献

GSAM基因的单核苷酸替换导致水稻中谷氨酸-1-半醛大量积累和黄叶表型。

A Single Nucleotide Substitution of GSAM Gene Causes Massive Accumulation of Glutamate 1-Semialdehyde and Yellow Leaf Phenotype in Rice.

作者信息

Wang Qian, Zhu Baiyang, Chen Congping, Yuan Zhaodi, Guo Jia, Yang Xiaorong, Wang San, Lv Yan, Liu Qingsong, Yang Bin, Sun Changhui, Wang Pingrong, Deng Xiaojian

机构信息

State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China.

Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China.

出版信息

Rice (N Y). 2021 Jun 5;14(1):50. doi: 10.1186/s12284-021-00492-x.

Abstract

BACKGROUND

Tetrapyrroles play indispensable roles in various biological processes. In higher plants, glutamate 1-semialdehyde 2,1-aminomutase (GSAM) converts glutamate 1-semialdehyde (GSA) to 5-aminolevulinic acid (ALA), which is the rate-limiting step of tetrapyrrole biosynthesis. Up to now, GSAM genes have been successively identified from many species. Besides, it was found that GSAM could form a dimeric protein with itself by x-ray crystallography. However, no mutant of GSAM has been identified in monocotyledonous plants, and no experiment on interaction of GSAM protein with itself has been reported so far.

RESULT

We isolated a yellow leaf mutant, ys53, in rice (Oryza sativa). The mutant showed decreased photosynthetic pigment contents, suppressed chloroplast development, and reduced photosynthetic capacity. In consequence, its major agronomic traits were significantly affected. Map-based cloning revealed that the candidate gene was LOC_Os08g41990 encoding GSAM protein. In ys53 mutant, a single nucleotide substitution in this gene caused an amino acid change in the encoded protein, so its ALA-synthesis ability was significantly reduced and GSA was massively accumulated. Complementation assays suggested the mutant phenotype of ys53 could be rescued by introducing wild-type OsGSAM gene, confirming that the point mutation in OsGSAM is the cause of the mutant phenotype. OsGSAM is mainly expressed in green tissues, and its encoded protein is localized to chloroplast. qRT-PCR analysis indicated that the mutation of OsGSAM not only affected the expressions of tetrapyrrole biosynthetic genes, but also influenced those of photosynthetic genes in rice. In addition, the yeast two-hybrid experiment showed that OsGSAM protein could interact with itself, which could largely depend on the two specific regions containing the 81th-160th and the 321th-400th amino acid residues at its N- and C-terminals, respectively.

CONCLUSIONS

We successfully characterized rice GSAM gene by a yellow leaf mutant and map-based cloning approach. Meanwhile, we verified that OsGSAM protein could interact with itself mainly by means of the two specific regions of amino acid residues at its N- and C-terminals, respectively.

摘要

背景

四吡咯在各种生物过程中发挥着不可或缺的作用。在高等植物中,谷氨酸-1-半醛2,1-氨基变位酶(GSAM)将谷氨酸-1-半醛(GSA)转化为5-氨基乙酰丙酸(ALA),这是四吡咯生物合成的限速步骤。到目前为止,已相继从许多物种中鉴定出GSAM基因。此外,通过X射线晶体学发现GSAM可以自身形成二聚体蛋白。然而,在单子叶植物中尚未鉴定出GSAM突变体,并且迄今为止尚未报道关于GSAM蛋白自身相互作用的实验。

结果

我们在水稻(Oryza sativa)中分离出一个黄叶突变体ys53。该突变体光合色素含量降低,叶绿体发育受抑制,光合能力下降。因此,其主要农艺性状受到显著影响。图位克隆表明候选基因是编码GSAM蛋白的LOC_Os08g41990。在ys53突变体中,该基因的单核苷酸替换导致编码蛋白中的氨基酸变化,因此其ALA合成能力显著降低,GSA大量积累。互补试验表明,导入野生型OsGSAM基因可以挽救ys53的突变表型,证实OsGSAM中的点突变是突变表型的原因。OsGSAM主要在绿色组织中表达,其编码蛋白定位于叶绿体。qRT-PCR分析表明,OsGSAM的突变不仅影响水稻中四吡咯生物合成基因的表达,还影响光合基因的表达。此外,酵母双杂交实验表明OsGSAM蛋白可以自身相互作用,这在很大程度上可能分别依赖于其N端和C端包含第81-160位和第321-400位氨基酸残基的两个特定区域。

结论

我们通过黄叶突变体和图位克隆方法成功鉴定了水稻GSAM基因。同时,我们验证了OsGSAM蛋白主要通过其N端和C端氨基酸残基的两个特定区域自身相互作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf87/8179877/3698eb202225/12284_2021_492_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验