Huang Jessica, Yuen Daniel, Mintern Justine D, Johnston Angus P R
Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville VIC 3052, Australia.
Department of Biochemistry and Molecular Biology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, Victoria 3010, Australia.
Curr Opin Colloid Interface Sci. 2021 Oct;55:101468. doi: 10.1016/j.cocis.2021.101468. Epub 2021 May 29.
Lipid nanoparticle (LNP) formulations of messenger RNA (mRNA) have demonstrated high efficacy as vaccines against SARS-CoV-2. The success of these nanoformulations underscores the potential of LNPs as a delivery system for next-generation biological therapies. In this article, we highlight the key considerations necessary for engineering LNPs as a vaccine delivery system and explore areas for further optimisation. There remain opportunities to improve the protection of mRNA, optimise cytosolic delivery, target specific cells, minimise adverse side-effects and control the release of RNA from the particle. The modular nature of LNP formulations and the flexibility of mRNA as a payload provide many pathways to implement these strategies. Innovation in LNP vaccines is likely to accelerate with increased enthusiasm following recent successes; however, any advances will have implications for a broad range of therapeutic applications beyond vaccination such as gene therapy.
信使核糖核酸(mRNA)的脂质纳米颗粒(LNP)制剂已证明作为抗SARS-CoV-2疫苗具有高效性。这些纳米制剂的成功凸显了LNP作为下一代生物疗法递送系统的潜力。在本文中,我们强调了将LNP设计为疫苗递送系统所需的关键考虑因素,并探索了进一步优化的领域。在保护mRNA、优化胞质递送、靶向特定细胞、最小化不良副作用以及控制RNA从颗粒中的释放方面仍有改进空间。LNP制剂的模块化性质以及作为有效载荷的mRNA的灵活性为实施这些策略提供了许多途径。随着近期取得成功后热情的增加,LNP疫苗的创新可能会加速;然而,任何进展都将对疫苗接种以外的广泛治疗应用产生影响,例如基因治疗。