Suppr超能文献

用于癫痫棘波定位的香槟算法的临床验证

Clinical Validation of the Champagne Algorithm for Epilepsy Spike Localization.

作者信息

Cai Chang, Chen Jessie, Findlay Anne M, Mizuiri Danielle, Sekihara Kensuke, Kirsch Heidi E, Nagarajan Srikantan S

机构信息

National Engineering Research Center for E-Learning, Central China Normal University, Wuhan, China.

Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States.

出版信息

Front Hum Neurosci. 2021 May 20;15:642819. doi: 10.3389/fnhum.2021.642819. eCollection 2021.

Abstract

Magnetoencephalography (MEG) is increasingly used for presurgical planning in people with medically refractory focal epilepsy. Localization of interictal epileptiform activity, a surrogate for the seizure onset zone whose removal may prevent seizures, is challenging and depends on the use of multiple complementary techniques. Accurate and reliable localization of epileptiform activity from spontaneous MEG data has been an elusive goal. One approach toward this goal is to use a novel Bayesian inference algorithm-the Champagne algorithm with noise learning-which has shown tremendous success in source reconstruction, especially for focal brain sources. In this study, we localized sources of manually identified MEG spikes using the Champagne algorithm in a cohort of 16 patients with medically refractory epilepsy collected in two consecutive series. To evaluate the reliability of this approach, we compared the performance to equivalent current dipole (ECD) modeling, a conventional source localization technique that is commonly used in clinical practice. Results suggest that Champagne may be a robust, automated, alternative to manual parametric dipole fitting methods for localization of interictal MEG spikes, in addition to its previously described clinical and research applications.

摘要

脑磁图(MEG)越来越多地用于药物难治性局灶性癫痫患者的术前规划。发作间期癫痫样活动的定位具有挑战性,且依赖于多种互补技术的使用,而发作间期癫痫样活动是癫痫发作起始区的替代指标,切除该区域可能预防癫痫发作。从自发脑磁图数据中准确可靠地定位癫痫样活动一直是一个难以实现的目标。实现这一目标的一种方法是使用一种新颖的贝叶斯推理算法——带噪声学习的香槟算法,该算法在源重建方面已取得巨大成功,尤其是对于局灶性脑源。在本研究中,我们使用香槟算法对16例药物难治性癫痫患者连续两个系列收集的脑磁图尖峰进行了手动识别源定位。为了评估该方法的可靠性,我们将其性能与等效电流偶极子(ECD)建模进行了比较,ECD建模是临床实践中常用的传统源定位技术。结果表明,除了其先前描述的临床和研究应用外,香槟算法可能是一种强大的、自动化的方法,可替代手动参数偶极子拟合方法来定位发作间期脑磁图尖峰。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a65/8172809/08ab4fdcb265/fnhum-15-642819-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验