Pattengale Brian, Freeze Jessica G, Guberman-Pfeffer Matthew J, Okabe Ryotaro, Ostresh Sarah, Chaudhuri Subhajyoti, Batista Victor S, Schmuttenmaer Charles A
Department of Chemistry and Yale Energy Sciences Institute, Yale University New Haven Connecticut 06520-8107 USA
Department of Molecular Biophysics and Biochemistry, Yale Microbial Sciences Institute, Yale University New Haven Connecticut 06520-8107 USA.
Chem Sci. 2020 Aug 27;11(35):9593-9603. doi: 10.1039/d0sc04302h.
We report the development of photosensitizing arrays based on conductive metal-organic frameworks (MOFs) that enable light harvesting and efficient charge separation. ZnTTFTB (TTFTB = tetrathiafulvalene tetrabenzoate) MOFs are deposited directly onto TiO photoanodes and structurally characterized by pXRD and EXAFS measurements. Photoinduced interfacial charge transfer dynamics are investigated by combining time-resolved THz spectroscopy and quantum dynamics simulations. Sub-600 fs electron injection into TiO is observed for ZnTTFTB-TiO and is compared to the corresponding dynamics for TTFTB-TiO analogues that lack the extended MOF architecture. Rapid electron injection from the MOF into TiO is enhanced by facile migration of the hole away from the interfacial region. Holes migrate through strongly coupled HOMO orbitals localized on the tetrathiafulvalene cores of the columnar stacks of the MOF, whereas electrons are less easily transferred through the spiral staircase arrangement of phenyl substituents of the MOF. The reported findings suggest that conductive MOFs could be exploited as novel photosensitizing arrays in applications to slow, and thereby make difficult, photocatalytic reactions such as those required for water-splitting in artificial photosynthesis.
我们报道了基于导电金属有机框架(MOF)的光敏阵列的开发,该阵列能够实现光捕获和高效电荷分离。ZnTTFTB(TTFTB = 四硫富瓦烯四苯甲酸酯)MOF直接沉积在TiO光阳极上,并通过粉末X射线衍射(pXRD)和扩展X射线吸收精细结构(EXAFS)测量进行结构表征。通过结合时间分辨太赫兹光谱和量子动力学模拟来研究光诱导界面电荷转移动力学。对于ZnTTFTB-TiO,观察到亚600飞秒的电子注入到TiO中,并将其与缺乏扩展MOF结构的TTFTB-TiO类似物的相应动力学进行比较。空穴从界面区域迁移,促进了电子从MOF快速注入到TiO中。空穴通过位于MOF柱状堆叠的四硫富瓦烯核心上的强耦合最高占据分子轨道(HOMO)迁移,而电子则不太容易通过MOF苯基取代基的螺旋楼梯排列转移。所报道的发现表明,导电MOF可作为新型光敏阵列用于减缓光催化反应,从而使诸如人工光合作用中水分解所需的那些光催化反应变得困难。