Chang Catie, Chen Jingyuan E
Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA.
Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
Curr Opin Biomed Eng. 2021 Jun;18. doi: 10.1016/j.cobme.2021.100279. Epub 2021 Mar 15.
Advances in the acquisition and analysis of functional magnetic resonance imaging (fMRI) data are revealing increasingly rich spatiotemporal structure across the human brain. Nonetheless, uncertainty surrounding the origins of fMRI hemodynamic signals, and in the link between large-scale fMRI patterns and ongoing functional states, presently limits the neurobiological conclusions one can draw from fMRI alone. Electroencephalography (EEG) provides complementary information about neural electrical activity and state change, and simultaneously acquiring EEG together with fMRI presents unique opportunities for studying large-scale brain activity and gaining more information from fMRI itself. Here, we discuss recent progress in the use of concurrent EEG-fMRI to enrich the investigation of neural and physiological states and clarify the origins of fMRI hemodynamic signals. Throughout, we outline perspectives on future directions and open challenges.
功能磁共振成像(fMRI)数据采集与分析方面的进展正揭示出整个人脑中日益丰富的时空结构。尽管如此,fMRI血液动力学信号起源的不确定性,以及大规模fMRI模式与当前功能状态之间联系的不确定性,目前限制了仅从fMRI得出的神经生物学结论。脑电图(EEG)提供了有关神经电活动和状态变化的补充信息,同时采集EEG和fMRI为研究大规模脑活动以及从fMRI本身获取更多信息提供了独特的机会。在此,我们讨论了同步EEG-fMRI在丰富神经和生理状态研究以及阐明fMRI血液动力学信号起源方面的最新进展。我们始终概述了对未来方向和开放挑战的观点。