Suppr超能文献

多模态脑电图-功能磁共振成像:深化对人类大脑大规模动态的洞察

Multimodal EEG-fMRI: advancing insight into large-scale human brain dynamics.

作者信息

Chang Catie, Chen Jingyuan E

机构信息

Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA.

Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.

出版信息

Curr Opin Biomed Eng. 2021 Jun;18. doi: 10.1016/j.cobme.2021.100279. Epub 2021 Mar 15.

Abstract

Advances in the acquisition and analysis of functional magnetic resonance imaging (fMRI) data are revealing increasingly rich spatiotemporal structure across the human brain. Nonetheless, uncertainty surrounding the origins of fMRI hemodynamic signals, and in the link between large-scale fMRI patterns and ongoing functional states, presently limits the neurobiological conclusions one can draw from fMRI alone. Electroencephalography (EEG) provides complementary information about neural electrical activity and state change, and simultaneously acquiring EEG together with fMRI presents unique opportunities for studying large-scale brain activity and gaining more information from fMRI itself. Here, we discuss recent progress in the use of concurrent EEG-fMRI to enrich the investigation of neural and physiological states and clarify the origins of fMRI hemodynamic signals. Throughout, we outline perspectives on future directions and open challenges.

摘要

功能磁共振成像(fMRI)数据采集与分析方面的进展正揭示出整个人脑中日益丰富的时空结构。尽管如此,fMRI血液动力学信号起源的不确定性,以及大规模fMRI模式与当前功能状态之间联系的不确定性,目前限制了仅从fMRI得出的神经生物学结论。脑电图(EEG)提供了有关神经电活动和状态变化的补充信息,同时采集EEG和fMRI为研究大规模脑活动以及从fMRI本身获取更多信息提供了独特的机会。在此,我们讨论了同步EEG-fMRI在丰富神经和生理状态研究以及阐明fMRI血液动力学信号起源方面的最新进展。我们始终概述了对未来方向和开放挑战的观点。

相似文献

8
Exploring spatiotemporal dynamics of the human brain by multimodal imaging.通过多模态成像探索人类大脑的时空动态。
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:57-60. doi: 10.1109/EMBC.2016.7590639.
9
Inferring Macroscale Brain Dynamics via Fusion of Simultaneous EEG-fMRI.通过同时进行 EEG-fMRI 的融合来推断宏观大脑动力学。
Annu Rev Neurosci. 2021 Jul 8;44:315-334. doi: 10.1146/annurev-neuro-100220-093239. Epub 2021 Mar 24.

引用本文的文献

本文引用的文献

1
Physiological changes in sleep that affect fMRI inference.影响功能磁共振成像推断的睡眠生理变化。
Curr Opin Behav Sci. 2020 Jun;33:42-50. doi: 10.1016/j.cobeha.2019.12.007. Epub 2019 Dec 23.
2
Connectivity dynamics from wakefulness to sleep.从清醒到睡眠的连通性动态。
Neuroimage. 2020 Oct 15;220:117047. doi: 10.1016/j.neuroimage.2020.117047. Epub 2020 Jun 17.
3
Layer-dependent functional connectivity methods.基于层的功能连接方法。
Prog Neurobiol. 2021 Dec;207:101835. doi: 10.1016/j.pneurobio.2020.101835. Epub 2020 Jun 5.
5
Vigilance Effects in Resting-State fMRI.静息态功能磁共振成像中的警觉效应。
Front Neurosci. 2020 Apr 23;14:321. doi: 10.3389/fnins.2020.00321. eCollection 2020.
6
Vascular physiology drives functional brain networks.血管生理学驱动功能性大脑网络。
Neuroimage. 2020 Aug 15;217:116907. doi: 10.1016/j.neuroimage.2020.116907. Epub 2020 May 6.
9
Neuromodulation of Brain State and Behavior.脑状态和行为的神经调节。
Annu Rev Neurosci. 2020 Jul 8;43:391-415. doi: 10.1146/annurev-neuro-100219-105424. Epub 2020 Apr 6.
10
Resting-state "physiological networks".静息态“生理网络”。
Neuroimage. 2020 Jun;213:116707. doi: 10.1016/j.neuroimage.2020.116707. Epub 2020 Mar 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验