Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA.
Commun Biol. 2024 Sep 30;7(1):1221. doi: 10.1038/s42003-024-06807-0.
Cognitive, behavioral, and disease traits are influenced by both genetic and environmental factors. Individual differences in these traits have been associated with graph theoretical properties of resting-state networks, indicating that variations in connectome topology may be driven by genetics. In this study, we establish the heritability of global and local graph properties of resting-state networks derived from functional MRI (fMRI) and magnetoencephalography (MEG) using a large sample of twins and non-twin siblings from the Human Connectome Project. We examine the heritability of MEG in the source space, providing a more accurate estimate of genetic influences on electrophysiological networks. Our findings show that most graph measures are more heritable for MEG compared to fMRI and the heritability for MEG is greater for amplitude compared to phase synchrony in the delta, high beta, and gamma frequency bands. This suggests that the fast neuronal dynamics in MEG offer unique insights into the genetic basis of brain network organization. Furthermore, we demonstrate that brain network features can serve as genetic fingerprints to accurately identify pairs of identical twins within a cohort. These results highlight novel opportunities to relate individual connectome signatures to genetic mechanisms underlying brain function.
认知、行为和疾病特征受到遗传和环境因素的影响。这些特征的个体差异与静息状态网络的图论性质有关,这表明连接组拓扑的变化可能是由遗传驱动的。在这项研究中,我们利用来自人类连接体计划的大量双胞胎和非双胞胎兄弟姐妹的样本,确定了功能磁共振成像(fMRI)和脑磁图(MEG)衍生的静息状态网络的全局和局部图性质的遗传性。我们检查了源空间中 MEG 的遗传性,为遗传对电生理网络的影响提供了更准确的估计。我们的发现表明,与 fMRI 相比,MEG 的大多数图测度更具遗传性,并且在 delta、高 beta 和伽马频带中,与相位同步相比,MEG 的幅度的遗传性更大。这表明 MEG 中的快速神经元动力学为大脑网络组织的遗传基础提供了独特的见解。此外,我们证明了脑网络特征可以作为遗传指纹,准确识别队列中同卵双胞胎的配对。这些结果突出了将个体连接组特征与大脑功能的遗传机制联系起来的新机会。