Suppr超能文献

一种简洁而有效的非对齐不完全多视图和多标签缺失学习模型。

A Concise Yet Effective Model for Non-Aligned Incomplete Multi-View and Missing Multi-Label Learning.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2022 Oct;44(10):5918-5932. doi: 10.1109/TPAMI.2021.3086895. Epub 2022 Sep 14.

Abstract

In reality, learning from multi-view multi-label data inevitably confronts three challenges: missing labels, incomplete views, and non-aligned views. Existing methods mainly concern the first two and commonly need multiple assumptions to attack them, making even state-of-the-arts involve at least two explicit hyper-parameters such that model selection is quite difficult. More toughly, they will fail in handling the third challenge, let alone addressing the three jointly. In this paper, we aim at meeting these under the least assumption by building a concise yet effective model with just one hyper-parameter. To ease insufficiency of available labels, we exploit not only the consensus of multiple views but also the global and local structures hidden among multiple labels. Specifically, we introduce an indicator matrix to tackle the first two challenges in a regression form while aligning the same individual labels and all labels of different views in a common label space to battle the third challenge. In aligning, we characterize the global and local structures of multiple labels to be high-rank and low-rank, respectively. Subsequently, an efficient algorithm with linear time complexity in the number of samples is established. Finally, even without view-alignment, our method substantially outperforms state-of-the-arts with view-alignment on five real datasets.

摘要

实际上,从多视图多标签数据中学习不可避免地面临三个挑战:标签缺失、视图不完整和视图不对齐。现有的方法主要关注前两个挑战,通常需要多个假设来解决它们,即使是最先进的方法也至少涉及两个显式超参数,因此模型选择非常困难。更困难的是,它们在处理第三个挑战时会失败,更不用说联合处理这三个挑战了。在本文中,我们旨在在最少假设的情况下通过构建一个只有一个超参数的简洁而有效的模型来满足这些需求。为了缓解可用标签的不足,我们不仅利用了多个视图的一致性,还利用了多个标签之间隐藏的全局和局部结构。具体来说,我们引入了一个指示矩阵,以回归的形式解决前两个挑战,同时在一个公共标签空间中对齐同一个体标签和不同视图的所有标签,以应对第三个挑战。在对齐过程中,我们将多个标签的全局和局部结构分别特征化为高维和低维。随后,建立了一种具有线性时间复杂度的高效算法,其复杂度与样本数量成正比。最后,即使没有视图对齐,我们的方法在五个真实数据集上也明显优于具有视图对齐的最先进方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验