Qi Kai, Yang Hu
IEEE Trans Neural Netw Learn Syst. 2022 Dec;33(12):7199-7209. doi: 10.1109/TNNLS.2021.3084404. Epub 2022 Nov 30.
Twin support vector machine (TWSVM), which constructs two nonparallel classifying hyperplanes, is widely applied to various fields. However, TWSVM solves two quadratic programming problems (QPPs) separately such that the final classifiers lack consistency and enough prediction accuracy. Moreover, by reason of only considering the 1-norm penalty for slack variables, TWSVM is not well defined in the geometrical view. In this article, we propose a novel elastic net nonparallel hyperplane support vector machine (ENNHSVM), which adopts elastic net penalty for slack variables and constructs two nonparallel separating hyperplanes simultaneously. We further discuss the properties of ENNHSVM theoretically and derive the violation tolerance upper bound to better demonstrate the relative violations of training samples in the same class. In particular, we design a safe screening rule for ENNHSVM to speed up the calculations. We finally compare the performance of ENNHSVM on both synthetic datasets and benchmark datasets with the Lagrangian SVM, the twin parametric-margin SVM, the elastic net SVM, the TWSVM, and the nonparallel hyperplane SVM.
孪生支持向量机(TWSVM)通过构建两个非平行的分类超平面,被广泛应用于各个领域。然而,TWSVM分别求解两个二次规划问题(QPPs),导致最终的分类器缺乏一致性和足够的预测精度。此外,由于仅考虑松弛变量的1-范数惩罚,TWSVM在几何观点上定义并不完善。在本文中,我们提出了一种新颖的弹性网非平行超平面支持向量机(ENNHSVM),它对松弛变量采用弹性网惩罚,并同时构建两个非平行的分离超平面。我们从理论上进一步讨论了ENNHSVM的性质,并推导了违规容忍上限,以更好地说明同一类中训练样本的相对违规情况。特别地,我们为ENNHSVM设计了一种安全筛选规则以加速计算。最后,我们将ENNHSVM在合成数据集和基准数据集上的性能与拉格朗日支持向量机、孪生参数边际支持向量机、弹性网支持向量机、TWSVM以及非平行超平面支持向量机进行了比较。