Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 8, 01187, Dresden, Germany.
Department of Civil Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
Eur Phys J E Soft Matter. 2022 Mar 23;45(3):29. doi: 10.1140/epje/s10189-022-00175-5.
In amorphous solids as in tissues, neighbor exchanges can relax local stresses and allow the material to flow. In this paper, we use an anisotropic vertex model to study T1 rearrangements in polygonal cellular networks. We consider two different physical realizations of the active anisotropic stresses: (i) anisotropic bond tension and (ii) anisotropic cell stress. Interestingly, the two types of active stress lead to patterns of relative orientation of T1 transitions and cell elongation that are different. Our work suggests that these two realizations of anisotropic active stresses can be observed in vivo. We describe and explain these results through the lens of a continuum description of the tissue as an anisotropic active material. We furthermore discuss the energetics of the dynamic tissue and express the energy balance in terms of internal elastic energy, mechanical work, chemical work and heat. This allows us to define active T1 transitions that can perform mechanical work while consuming chemical energy.
在无定形固体和组织中,相邻交换可以松弛局部应力并允许物质流动。在本文中,我们使用各向异性顶点模型研究了多边形细胞网络中的 T1 重排。我们考虑了两种不同的活性各向异性应力的物理实现:(i)各向异性键张力和(ii)各向异性细胞应力。有趣的是,这两种类型的主动应力导致 T1 转变和细胞伸长的相对取向模式不同。我们的工作表明,这两种各向异性活性应力的实现可以在体内观察到。我们通过将组织描述为各向异性活性材料的连续体描述来描述和解释这些结果。我们进一步讨论了动态组织的能量,并根据内部弹性能量、机械功、化学功和热来表示能量平衡。这使我们能够定义可以消耗化学能并进行机械功的主动 T1 转变。