Suppr超能文献

高分辨率光谱信息能够对小麦叶片表皮蜡质进行表型分析。

High-resolution spectral information enables phenotyping of leaf epicuticular wax in wheat.

作者信息

Camarillo-Castillo Fátima, Huggins Trevis D, Mondal Suchismita, Reynolds Matthew P, Tilley Michael, Hays Dirk B

机构信息

Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, Mexico, D.F, 06600, Mexico.

USDA ARS, Dale Bumper National Rice Research Center, Stuttgart, AR, 72160, USA.

出版信息

Plant Methods. 2021 Jun 7;17(1):58. doi: 10.1186/s13007-021-00759-w.

Abstract

BACKGROUND

Epicuticular wax (EW) is the first line of defense in plants for protection against biotic and abiotic factors in the environment. In wheat, EW is associated with resilience to heat and drought stress, however, the current limitations on phenotyping EW restrict the integration of this secondary trait into wheat breeding pipelines. In this study we evaluated the use of light reflectance as a proxy for EW load and developed an efficient indirect method for the selection of genotypes with high EW density.

RESULTS

Cuticular waxes affect the light that is reflected, absorbed and transmitted by plants. The narrow spectral regions statistically associated with EW overlap with bands linked to photosynthetic radiation (500 nm), carotenoid absorbance (400 nm) and water content (~ 900 nm) in plants. The narrow spectral indices developed predicted 65% (EWI-13) and 44% (EWI-1) of the variation in this trait utilizing single-leaf reflectance. However, the normalized difference indices EWI-4 and EWI-9 improved the phenotyping efficiency with canopy reflectance across all field experimental trials. Indirect selection for EW with EWI-4 and EWI-9 led to a selection efficiency of 70% compared to phenotyping with the chemical method. The regression model EWM-7 integrated eight narrow wavelengths and accurately predicted 71% of the variation in the EW load (mg·dm) with leaf reflectance, but under field conditions, a single-wavelength model consistently estimated EW with an average RMSE of 1.24 mg·dm utilizing ground and aerial canopy reflectance.

CONCLUSIONS

Overall, the indices EWI-1, EWI-13 and the model EWM-7 are reliable tools for indirect selection for EW based on leaf reflectance, and the indices EWI-4, EWI-9 and the model EWM-1 are reliable for selection based on canopy reflectance. However, further research is needed to define how the background effects and geometry of the canopy impact the accuracy of these phenotyping methods.

摘要

背景

表皮蜡质(EW)是植物抵御环境中生物和非生物因素的第一道防线。在小麦中,EW与耐热性和干旱胁迫抗性相关,然而,目前表皮蜡质表型分析的局限性限制了这一次级性状融入小麦育种流程。在本研究中,我们评估了使用光反射率作为EW负载的替代指标,并开发了一种高效的间接方法来选择具有高EW密度的基因型。

结果

角质蜡质影响植物反射、吸收和透射的光。与EW在统计学上相关的窄光谱区域与植物中与光合辐射(500nm)、类胡萝卜素吸收(400nm)和含水量(约900nm)相关的波段重叠。利用单叶反射率,所开发的窄光谱指数预测了该性状65%(EWI - 13)和44%(EWI - 1)的变异。然而,归一化差异指数EWI - 4和EWI - 9通过冠层反射率提高了所有田间试验的表型分析效率。与化学方法进行表型分析相比,使用EWI - 4和EWI - 9对EW进行间接选择的选择效率为70%。回归模型EWM - 7整合了八个窄波长,并利用叶片反射率准确预测了EW负载(mg·dm)71%的变异,但在田间条件下,利用地面和空中冠层反射率,单波长模型始终以平均均方根误差1.24mg·dm估计EW。

结论

总体而言,指数EWI - 1、EWI - 13和模型EWM - 7是基于叶片反射率进行EW间接选择的可靠工具,指数EWI - 4、EWI - 9和模型EWM - 1是基于冠层反射率进行选择的可靠工具。然而,需要进一步研究来确定背景效应和冠层几何形状如何影响这些表型分析方法的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/85b5/8185930/7f4d12b4d6d0/13007_2021_759_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验