Suppr超能文献

中国多种异质来源金黄色葡萄球菌的全基因组测序与机器学习分析揭示了抗菌药物耐药性的共同遗传特征。

Whole-Genome Sequencing and Machine Learning Analysis of Staphylococcus aureus from Multiple Heterogeneous Sources in China Reveals Common Genetic Traits of Antimicrobial Resistance.

作者信息

Wang Wei, Baker Michelle, Hu Yue, Xu Jin, Yang Dajin, Maciel-Guerra Alexandre, Xue Ning, Li Hui, Yan Shaofei, Li Menghan, Bai Yao, Dong Yinping, Peng Zixin, Ma Jinjing, Li Fengqin, Dottorini Tania

机构信息

NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China.

School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Leicestershire, United Kingdom.

出版信息

mSystems. 2021 Jun 29;6(3):e0118520. doi: 10.1128/mSystems.01185-20. Epub 2021 Jun 8.

Abstract

Staphylococcus aureus is a worldwide leading cause of numerous diseases ranging from food-poisoning to lethal infections. Methicillin-resistant S. aureus (MRSA) has been found capable of acquiring resistance to most antimicrobials. MRSA is ubiquitous and diverse even in terms of antimicrobial resistance (AMR) profiles, posing a challenge for treatment. Here, we present a comprehensive study of S. aureus in China, addressing epidemiology, phylogenetic reconstruction, genomic characterization, and identification of AMR profiles. The study analyzes 673 S. aureus isolates from food as well as from hospitalized and healthy individuals. The isolates have been collected over a 9-year period, between 2010 and 2018, from 27 provinces across China. By whole-genome sequencing, Bayesian divergence analysis, and supervised machine learning, we reconstructed the phylogeny of the isolates and compared them to references from other countries. We identified 72 sequence types (STs), of which, 29 were novel. We found 81 MRSA lineages by multilocus sequence type (MLST), , staphylococcal cassette chromosome element (SCC), and Panton-Valentine leukocidin (PVL) typing. In addition, novel variants of SCC type IV hosting extra metal and antimicrobial resistance genes, as well as a new SCC type, were found. New Bayesian dating of the split times of major clades showed that ST9, ST59, and ST239 in China and European countries fell in different branches, whereas this pattern was not observed for the ST398 clone. On the contrary, the clonal transmission of ST398 was more intermixed in regard to geographic origin. Finally, we identified genetic determinants of resistance to 10 antimicrobials, discriminating drug-resistant bacteria from susceptible strains in the cohort. Our results reveal the emergence of Chinese MRSA lineages enriched of AMR determinants that share similar genetic traits of antimicrobial resistance across human and food, hinting at a complex scenario of evolving transmission routes. Little information is available on the epidemiology and characterization of Staphylococcus aureus in China. The role of food is a cause of major concern: staphylococcal foodborne diseases affect thousands every year, and the presence of resistant Staphylococcus strains on raw retail meat products is well documented. We studied a large heterogeneous data set of S. aureus isolates from many provinces of China, isolated from food as well as from individuals. Our large whole-genome collection represents a unique catalogue that can be easily meta-analyzed and integrated with further studies and adds to the library of S. aureus sequences in the public domain in a currently underrepresented geographical region. The new Bayesian dating of the split times of major drug-resistant enriched clones is relevant in showing that Chinese and European methicillin-resistant S. aureus (MRSA) have evolved differently. Our machine learning approach, across a large number of antibiotics, shows novel determinants underlying resistance and reveals frequent resistant traits in specific clonal complexes, highlighting the importance of particular clonal complexes in China. Our findings substantially expand what is known of the evolution and genetic determinants of resistance in food-associated S. aureus in China and add crucial information for whole-genome sequencing (WGS)-based surveillance of S. aureus.

摘要

金黄色葡萄球菌是全球范围内导致众多疾病的主要病因,这些疾病涵盖从食物中毒到致命感染等多种类型。耐甲氧西林金黄色葡萄球菌(MRSA)已被发现能够对大多数抗菌药物产生耐药性。MRSA无处不在,即使在抗菌药物耐药性(AMR)谱方面也具有多样性,这给治疗带来了挑战。在此,我们展示了一项针对中国金黄色葡萄球菌的全面研究,涉及流行病学、系统发育重建、基因组特征分析以及AMR谱的鉴定。该研究分析了673株来自食品以及住院患者和健康个体的金黄色葡萄球菌分离株。这些分离株是在2010年至2018年的9年期间从中国27个省份收集的。通过全基因组测序、贝叶斯分歧分析和监督机器学习,我们重建了分离株的系统发育,并将它们与来自其他国家的参考菌株进行比较。我们鉴定出72种序列类型(STs),其中29种是新的。通过多位点序列分型(MLST)、葡萄球菌盒式染色体元件(SCC)和杀白细胞素(PVL)分型,我们发现了81种MRSA谱系。此外,还发现了携带额外金属和抗菌药物耐药基因的IV型SCC新变体以及一种新的SCC类型。主要分支分裂时间的新贝叶斯年代测定表明,中国和欧洲国家的ST9、ST59和ST239处于不同分支,而ST398克隆未观察到这种模式。相反,ST398的克隆传播在地理起源方面更为混杂。最后,我们鉴定出对10种抗菌药物耐药的遗传决定因素,区分了队列中耐药细菌和敏感菌株。我们的结果揭示了富含AMR决定因素的中国MRSA谱系的出现,这些谱系在人类和食品中具有相似的抗菌药物耐药遗传特征,暗示了传播途径演变的复杂情况。关于中国金黄色葡萄球菌的流行病学和特征的信息很少。食品的作用是一个主要关注点:葡萄球菌性食源性疾病每年影响数千人,并且在零售生鲜肉制品上存在耐药葡萄球菌菌株的情况已有充分记录。我们研究了来自中国多个省份的大量异质性金黄色葡萄球菌分离株数据集,这些分离株来自食品以及个体。我们庞大的全基因组集合代表了一个独特的目录,可轻松进行荟萃分析并与进一步的研究整合,并为目前代表性不足的地理区域的公共领域金黄色葡萄球菌序列库增添内容。主要耐药富集克隆分裂时间的新贝叶斯年代测定对于表明中国和欧洲耐甲氧西林金黄色葡萄球菌(MRSA)的进化方式不同具有重要意义。我们的机器学习方法针对大量抗生素,显示出耐药的新决定因素,并揭示了特定克隆复合体中频繁出现的耐药特征,突出了中国特定克隆复合体的重要性。我们的发现极大地扩展了对中国食品相关金黄色葡萄球菌耐药性进化和遗传决定因素的认识,并为基于全基因组测序(WGS)的金黄色葡萄球菌监测增添了关键信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验